Lora Tubić , Milorad Dragić , Marija S. Nikolić , Marija Stojadinović , Zorana Jovanović , Steva M. Lević , Vladimir Pavlović , Milan Nikolić , Nikola Gligorijević , Simeon Minić
{"title":"酸性条件下紫红卟啉水凝胶的结构和功能表征","authors":"Lora Tubić , Milorad Dragić , Marija S. Nikolić , Marija Stojadinović , Zorana Jovanović , Steva M. Lević , Vladimir Pavlović , Milan Nikolić , Nikola Gligorijević , Simeon Minić","doi":"10.1016/j.foodhyd.2025.111963","DOIUrl":null,"url":null,"abstract":"<div><div>The red microalgae <em>Porphyridium purpureum</em> exhibits exceptional nutritional properties due to rich protein content, extracellular polysaccharides, polyunsaturated fatty acids, vitamins, and minerals. The coloured and bioactive phycobiliproteins make this microalga a valuable source for developing innovative food products. Herein, we developed a simple procedure to induce the formation of coloured hydrogels (POR) from <em>P. purpureum</em> under acidic conditions (pH 2) by inhibiting the repulsion of charged groups and facilitating polysaccharide chain association. We further investigated the effects of adding alginate at a 0.5 % concentration on the gel structure (POR ALG) and techno-functional properties. The resulting vividly coloured hydrogels were characterised in terms of microstructure (<em>via</em> SEM and confocal microscopy), functional groups (FTIR), rheological behaviour, water uptake and water-holding capacity, digestibility, and antioxidant activity. Alginate addition significantly improved the gel consistency (POR ALG), decreased porosity, and increased the storage modulus by one order of magnitude compared to POR gel. Confocal microscopy revealed that alginate inhibited phycobiliprotein agglomeration, reduced fluorescence, and provided more uniform protein distribution. The water uptake capacity was notably higher in POR ALG hydrogel at pH 2, whereas POR hydrogel had the highest capacity at neutral pH. <em>In vitro</em> digestion studies demonstrated that the hydrogels resisted gastric digestion, while bioactive (chromo)peptides are released in the intestinal phase, thereby preserving their antioxidant activity. Lyophilisation emerged as the preferred drying method, maintaining rehydration potential and structural integrity. The developed <em>P. purpureum</em>-based hydrogels demonstrate significant potential as functional food ingredients, offering bioactive benefits, vibrant colour stability, and protection for sensitive molecules during digestion.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"172 ","pages":"Article 111963"},"PeriodicalIF":11.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and functional characterisation of hydrogels prepared from Porphyridium purpureum under acidic conditions\",\"authors\":\"Lora Tubić , Milorad Dragić , Marija S. Nikolić , Marija Stojadinović , Zorana Jovanović , Steva M. Lević , Vladimir Pavlović , Milan Nikolić , Nikola Gligorijević , Simeon Minić\",\"doi\":\"10.1016/j.foodhyd.2025.111963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The red microalgae <em>Porphyridium purpureum</em> exhibits exceptional nutritional properties due to rich protein content, extracellular polysaccharides, polyunsaturated fatty acids, vitamins, and minerals. The coloured and bioactive phycobiliproteins make this microalga a valuable source for developing innovative food products. Herein, we developed a simple procedure to induce the formation of coloured hydrogels (POR) from <em>P. purpureum</em> under acidic conditions (pH 2) by inhibiting the repulsion of charged groups and facilitating polysaccharide chain association. We further investigated the effects of adding alginate at a 0.5 % concentration on the gel structure (POR ALG) and techno-functional properties. The resulting vividly coloured hydrogels were characterised in terms of microstructure (<em>via</em> SEM and confocal microscopy), functional groups (FTIR), rheological behaviour, water uptake and water-holding capacity, digestibility, and antioxidant activity. Alginate addition significantly improved the gel consistency (POR ALG), decreased porosity, and increased the storage modulus by one order of magnitude compared to POR gel. Confocal microscopy revealed that alginate inhibited phycobiliprotein agglomeration, reduced fluorescence, and provided more uniform protein distribution. The water uptake capacity was notably higher in POR ALG hydrogel at pH 2, whereas POR hydrogel had the highest capacity at neutral pH. <em>In vitro</em> digestion studies demonstrated that the hydrogels resisted gastric digestion, while bioactive (chromo)peptides are released in the intestinal phase, thereby preserving their antioxidant activity. Lyophilisation emerged as the preferred drying method, maintaining rehydration potential and structural integrity. The developed <em>P. purpureum</em>-based hydrogels demonstrate significant potential as functional food ingredients, offering bioactive benefits, vibrant colour stability, and protection for sensitive molecules during digestion.</div></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"172 \",\"pages\":\"Article 111963\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X25009233\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X25009233","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Structural and functional characterisation of hydrogels prepared from Porphyridium purpureum under acidic conditions
The red microalgae Porphyridium purpureum exhibits exceptional nutritional properties due to rich protein content, extracellular polysaccharides, polyunsaturated fatty acids, vitamins, and minerals. The coloured and bioactive phycobiliproteins make this microalga a valuable source for developing innovative food products. Herein, we developed a simple procedure to induce the formation of coloured hydrogels (POR) from P. purpureum under acidic conditions (pH 2) by inhibiting the repulsion of charged groups and facilitating polysaccharide chain association. We further investigated the effects of adding alginate at a 0.5 % concentration on the gel structure (POR ALG) and techno-functional properties. The resulting vividly coloured hydrogels were characterised in terms of microstructure (via SEM and confocal microscopy), functional groups (FTIR), rheological behaviour, water uptake and water-holding capacity, digestibility, and antioxidant activity. Alginate addition significantly improved the gel consistency (POR ALG), decreased porosity, and increased the storage modulus by one order of magnitude compared to POR gel. Confocal microscopy revealed that alginate inhibited phycobiliprotein agglomeration, reduced fluorescence, and provided more uniform protein distribution. The water uptake capacity was notably higher in POR ALG hydrogel at pH 2, whereas POR hydrogel had the highest capacity at neutral pH. In vitro digestion studies demonstrated that the hydrogels resisted gastric digestion, while bioactive (chromo)peptides are released in the intestinal phase, thereby preserving their antioxidant activity. Lyophilisation emerged as the preferred drying method, maintaining rehydration potential and structural integrity. The developed P. purpureum-based hydrogels demonstrate significant potential as functional food ingredients, offering bioactive benefits, vibrant colour stability, and protection for sensitive molecules during digestion.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.