基于chen改进的Lee相变模型在高能熔体-冷却剂相互作用条件下膜沸腾CFD模拟中的稳定实现

IF 5.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Mihael Boštjan Končar , Matej Tekavčič , Mitja Uršič , Mihael Sekavčnik
{"title":"基于chen改进的Lee相变模型在高能熔体-冷却剂相互作用条件下膜沸腾CFD模拟中的稳定实现","authors":"Mihael Boštjan Končar ,&nbsp;Matej Tekavčič ,&nbsp;Mitja Uršič ,&nbsp;Mihael Sekavčnik","doi":"10.1016/j.ijheatmasstransfer.2025.127813","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates heat and mass transfer during energetic melt-coolant interactions, focusing on film boiling around a hot melt particle in subcooled convective flow. The considered conditions, free-flow velocities of a few m/s, melt particle temperatures of several thousand K, particle diameters of several tens of a μm, and liquid subcooling of several tens of a K, align with TREPAM experiments (CEA, France).</div><div>A two-phase computational fluid dynamics framework, based on the Volume of Fluid method, is used. An improved phase-change model is implemented, combining Chen’s explicit formulation of the phase-change intensity factor with the robustness of the conventional Lee model. The approach reduces sensitivity to empirical parameters and enhances phase-change localisation. Additional constraints on the intensity factor ensure numerical stability under extreme thermal conditions relevant to vapour energetic melt-coolant interactions.</div><div>Simulations of TREPAM experiments demonstrate improved heat flux predictions and enhanced flow dynamics capture. Analysis of the simulated velocity fields reveal secondary flows in the vapour wake, impacting heat and mass transfer and emphasizing the need to resolve vapor-phase flow conditions. To fully validate proposed modifications to phase-change model further numerical and experimental investigation is required, focusing on vapour film morphology and localized heat transfer intensity.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"255 ","pages":"Article 127813"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable implementation of a Chen-based enhancement to the Lee phase-change model for CFD simulation of film boiling under energetic melt-coolant interaction conditions\",\"authors\":\"Mihael Boštjan Končar ,&nbsp;Matej Tekavčič ,&nbsp;Mitja Uršič ,&nbsp;Mihael Sekavčnik\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.127813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates heat and mass transfer during energetic melt-coolant interactions, focusing on film boiling around a hot melt particle in subcooled convective flow. The considered conditions, free-flow velocities of a few m/s, melt particle temperatures of several thousand K, particle diameters of several tens of a μm, and liquid subcooling of several tens of a K, align with TREPAM experiments (CEA, France).</div><div>A two-phase computational fluid dynamics framework, based on the Volume of Fluid method, is used. An improved phase-change model is implemented, combining Chen’s explicit formulation of the phase-change intensity factor with the robustness of the conventional Lee model. The approach reduces sensitivity to empirical parameters and enhances phase-change localisation. Additional constraints on the intensity factor ensure numerical stability under extreme thermal conditions relevant to vapour energetic melt-coolant interactions.</div><div>Simulations of TREPAM experiments demonstrate improved heat flux predictions and enhanced flow dynamics capture. Analysis of the simulated velocity fields reveal secondary flows in the vapour wake, impacting heat and mass transfer and emphasizing the need to resolve vapor-phase flow conditions. To fully validate proposed modifications to phase-change model further numerical and experimental investigation is required, focusing on vapour film morphology and localized heat transfer intensity.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"255 \",\"pages\":\"Article 127813\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025011482\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025011482","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了热熔液-冷却剂相互作用过程中的传热和传质,重点研究了过冷对流流动中热熔液颗粒周围的膜沸腾。所考虑的自由流动速度为几m/s,熔体颗粒温度为几千K,颗粒直径为几十μm,液体过冷为几十K的条件与TREPAM实验(CEA, France)一致。采用基于流体体积法的两相计算流体动力学框架。将Chen的相变强度因子的显式公式与传统Lee模型的鲁棒性相结合,实现了一种改进的相变模型。该方法降低了对经验参数的敏感性,增强了相位定位。强度因子的附加约束确保了在与蒸气高能熔体-冷却剂相互作用相关的极端热条件下的数值稳定性。模拟TREPAM实验表明,改进的热通量预测和增强的流动动力学捕获。对模拟速度场的分析揭示了蒸汽尾迹中的二次流,影响传热传质,并强调需要解决气相流条件。为了充分验证所提出的相变模型的修改,需要进一步的数值和实验研究,重点关注气膜形态和局部传热强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable implementation of a Chen-based enhancement to the Lee phase-change model for CFD simulation of film boiling under energetic melt-coolant interaction conditions
This study investigates heat and mass transfer during energetic melt-coolant interactions, focusing on film boiling around a hot melt particle in subcooled convective flow. The considered conditions, free-flow velocities of a few m/s, melt particle temperatures of several thousand K, particle diameters of several tens of a μm, and liquid subcooling of several tens of a K, align with TREPAM experiments (CEA, France).
A two-phase computational fluid dynamics framework, based on the Volume of Fluid method, is used. An improved phase-change model is implemented, combining Chen’s explicit formulation of the phase-change intensity factor with the robustness of the conventional Lee model. The approach reduces sensitivity to empirical parameters and enhances phase-change localisation. Additional constraints on the intensity factor ensure numerical stability under extreme thermal conditions relevant to vapour energetic melt-coolant interactions.
Simulations of TREPAM experiments demonstrate improved heat flux predictions and enhanced flow dynamics capture. Analysis of the simulated velocity fields reveal secondary flows in the vapour wake, impacting heat and mass transfer and emphasizing the need to resolve vapor-phase flow conditions. To fully validate proposed modifications to phase-change model further numerical and experimental investigation is required, focusing on vapour film morphology and localized heat transfer intensity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信