f(Q)引力下(2+1)维黑洞的拓扑结构和稳定性

IF 4.5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
G.G.L. Nashed , M. Bedair
{"title":"f(Q)引力下(2+1)维黑洞的拓扑结构和稳定性","authors":"G.G.L. Nashed ,&nbsp;M. Bedair","doi":"10.1016/j.physletb.2025.139866","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we construct a novel exact solution in the framework of symmetric teleparallel gravity (STG), specifically in the context of three-dimensional <span><math><mrow><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></math></span> gravity, where <span><math><mi>Q</mi></math></span> is the non-metricity scalar. Utilizing a spherically symmetric <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional metric and the coincident gauge condition, we derive a new class of black hole solutions characterized by an analytic form of <span><math><mrow><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></math></span> that generalizes the Banados-Teitelboim-Zanelli (BTZ) solution. The resulting solution generalizes the BTZ black hole by incorporating a dimensional deformation parameter <span><math><msub><mi>a</mi><mn>1</mn></msub></math></span>, yielding deviations from general relativity due to non-metricity corrections. This solution reduces to the standard BTZ geometry in the limit of vanishing deformation parameter <span><math><msub><mi>a</mi><mn>1</mn></msub></math></span>, while exhibiting distinctive features when <span><math><mrow><msub><mi>a</mi><mn>1</mn></msub><mo>≠</mo><mn>0</mn></mrow></math></span>, including deviation in curvature and non-metricity scalars. We conduct a thorough analysis of the thermodynamic properties of the resulting black hole, including its Hawking temperature, entropy, and heat capacity, confirming its thermodynamic stability and demonstrating the validity of the first law of thermodynamics. Furthermore, we explore the topological classification of the black hole using the generalized free energy method, demonstrating the existence of nontrivial topological charges associated with its horizon structure.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"869 ","pages":"Article 139866"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology and stability of a (2+1)-dimensional black hole in f(Q) gravity\",\"authors\":\"G.G.L. Nashed ,&nbsp;M. Bedair\",\"doi\":\"10.1016/j.physletb.2025.139866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we construct a novel exact solution in the framework of symmetric teleparallel gravity (STG), specifically in the context of three-dimensional <span><math><mrow><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></math></span> gravity, where <span><math><mi>Q</mi></math></span> is the non-metricity scalar. Utilizing a spherically symmetric <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional metric and the coincident gauge condition, we derive a new class of black hole solutions characterized by an analytic form of <span><math><mrow><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></math></span> that generalizes the Banados-Teitelboim-Zanelli (BTZ) solution. The resulting solution generalizes the BTZ black hole by incorporating a dimensional deformation parameter <span><math><msub><mi>a</mi><mn>1</mn></msub></math></span>, yielding deviations from general relativity due to non-metricity corrections. This solution reduces to the standard BTZ geometry in the limit of vanishing deformation parameter <span><math><msub><mi>a</mi><mn>1</mn></msub></math></span>, while exhibiting distinctive features when <span><math><mrow><msub><mi>a</mi><mn>1</mn></msub><mo>≠</mo><mn>0</mn></mrow></math></span>, including deviation in curvature and non-metricity scalars. We conduct a thorough analysis of the thermodynamic properties of the resulting black hole, including its Hawking temperature, entropy, and heat capacity, confirming its thermodynamic stability and demonstrating the validity of the first law of thermodynamics. Furthermore, we explore the topological classification of the black hole using the generalized free energy method, demonstrating the existence of nontrivial topological charges associated with its horizon structure.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"869 \",\"pages\":\"Article 139866\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269325006252\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325006252","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在对称遥平行重力(STG)框架下构造了一个新的精确解,特别是在三维f(Q)重力的背景下,其中Q是非度量标量。利用球对称(2+1)维度规和符合规范条件,导出了一类新的黑洞解,其解析形式为f(Q),推广了Banados-Teitelboim-Zanelli (BTZ)解。由此产生的解通过纳入维度变形参数a1来推广BTZ黑洞,由于非度规修正而产生与广义相对论的偏差。该解在变形参数a1消失的极限下简化为标准BTZ几何,同时在a1≠0时表现出独特的特征,包括曲率偏差和非度规标量。我们对所得黑洞的热力学性质进行了深入的分析,包括其霍金温度、熵和热容,确认了其热力学稳定性,并证明了热力学第一定律的有效性。此外,我们利用广义自由能方法探讨了黑洞的拓扑分类,证明了与其视界结构相关的非平凡拓扑电荷的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology and stability of a (2+1)-dimensional black hole in f(Q) gravity
In this work, we construct a novel exact solution in the framework of symmetric teleparallel gravity (STG), specifically in the context of three-dimensional f(Q) gravity, where Q is the non-metricity scalar. Utilizing a spherically symmetric (2+1)-dimensional metric and the coincident gauge condition, we derive a new class of black hole solutions characterized by an analytic form of f(Q) that generalizes the Banados-Teitelboim-Zanelli (BTZ) solution. The resulting solution generalizes the BTZ black hole by incorporating a dimensional deformation parameter a1, yielding deviations from general relativity due to non-metricity corrections. This solution reduces to the standard BTZ geometry in the limit of vanishing deformation parameter a1, while exhibiting distinctive features when a10, including deviation in curvature and non-metricity scalars. We conduct a thorough analysis of the thermodynamic properties of the resulting black hole, including its Hawking temperature, entropy, and heat capacity, confirming its thermodynamic stability and demonstrating the validity of the first law of thermodynamics. Furthermore, we explore the topological classification of the black hole using the generalized free energy method, demonstrating the existence of nontrivial topological charges associated with its horizon structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信