二阶不可逆扩散反应过程的稳态电化学建模

IF 2.4 4区 化学 Q4 ELECTROCHEMISTRY
S. Pandi Selvi , O. Nethaji , S. Vinolyn Sylvia , L. Rajendran
{"title":"二阶不可逆扩散反应过程的稳态电化学建模","authors":"S. Pandi Selvi ,&nbsp;O. Nethaji ,&nbsp;S. Vinolyn Sylvia ,&nbsp;L. Rajendran","doi":"10.1016/j.ijoes.2025.101177","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a mathematical model for steady-state mass transport in electrochemical systems involving isotropic diffusion and a second-order irreversible reaction within a porous particle of any geometry. The nonlinear governing equation reflects the interplay between diffusion and nonlinear kinetics, relevant to electrochemical reactors, porous electrodes, and biosensors. Two semi-analytical methods the Rajendran-Joy method (RJM) and Akbari-Ganji method (AGM) are employed to obtain approximate solutions, with trial functions optimized using electrochemical boundary conditions. Numerical simulations confirm the accuracy of the solutions. A parametric study explores the effects of reaction rates, isotropic diffusion, and geometry on concentration profiles, while sensitivity analysis identifies key parameters influencing transport-reaction behaviour. A simple and novel expression for the effectiveness factor, quantifying the interplay between reaction kinetics and mass transport within porous electrodes, is also presented. The results underscore the applicability of mathematical modeling in optimizing electrochemical system performance and advancing the understanding of nonlinear transport phenomena.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 11","pages":"Article 101177"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical modeling of steady-state diffusion-reaction processes with second-order irreversible kinetics\",\"authors\":\"S. Pandi Selvi ,&nbsp;O. Nethaji ,&nbsp;S. Vinolyn Sylvia ,&nbsp;L. Rajendran\",\"doi\":\"10.1016/j.ijoes.2025.101177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a mathematical model for steady-state mass transport in electrochemical systems involving isotropic diffusion and a second-order irreversible reaction within a porous particle of any geometry. The nonlinear governing equation reflects the interplay between diffusion and nonlinear kinetics, relevant to electrochemical reactors, porous electrodes, and biosensors. Two semi-analytical methods the Rajendran-Joy method (RJM) and Akbari-Ganji method (AGM) are employed to obtain approximate solutions, with trial functions optimized using electrochemical boundary conditions. Numerical simulations confirm the accuracy of the solutions. A parametric study explores the effects of reaction rates, isotropic diffusion, and geometry on concentration profiles, while sensitivity analysis identifies key parameters influencing transport-reaction behaviour. A simple and novel expression for the effectiveness factor, quantifying the interplay between reaction kinetics and mass transport within porous electrodes, is also presented. The results underscore the applicability of mathematical modeling in optimizing electrochemical system performance and advancing the understanding of nonlinear transport phenomena.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":\"20 11\",\"pages\":\"Article 101177\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398125002524\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398125002524","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了电化学系统稳态质量传递的数学模型,包括各向同性扩散和任何几何形状的多孔粒子内的二阶不可逆反应。非线性控制方程反映了扩散和非线性动力学之间的相互作用,与电化学反应器、多孔电极和生物传感器有关。采用Rajendran-Joy法(RJM)和Akbari-Ganji法(AGM)两种半解析方法求得近似解,并利用电化学边界条件对试函数进行优化。数值模拟验证了该方法的准确性。参数研究探讨了反应速率、各向同性扩散和几何形状对浓度分布的影响,而灵敏度分析确定了影响转运-反应行为的关键参数。本文还提出了一个简单而新颖的有效因子表达式,用于量化多孔电极内反应动力学和质量传递之间的相互作用。结果强调了数学建模在优化电化学系统性能和促进对非线性输运现象的理解方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical modeling of steady-state diffusion-reaction processes with second-order irreversible kinetics
This work presents a mathematical model for steady-state mass transport in electrochemical systems involving isotropic diffusion and a second-order irreversible reaction within a porous particle of any geometry. The nonlinear governing equation reflects the interplay between diffusion and nonlinear kinetics, relevant to electrochemical reactors, porous electrodes, and biosensors. Two semi-analytical methods the Rajendran-Joy method (RJM) and Akbari-Ganji method (AGM) are employed to obtain approximate solutions, with trial functions optimized using electrochemical boundary conditions. Numerical simulations confirm the accuracy of the solutions. A parametric study explores the effects of reaction rates, isotropic diffusion, and geometry on concentration profiles, while sensitivity analysis identifies key parameters influencing transport-reaction behaviour. A simple and novel expression for the effectiveness factor, quantifying the interplay between reaction kinetics and mass transport within porous electrodes, is also presented. The results underscore the applicability of mathematical modeling in optimizing electrochemical system performance and advancing the understanding of nonlinear transport phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
714
审稿时长
2.6 months
期刊介绍: International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信