应力集中解码:FEA-ML协同作用超越了轻量化Mg-Al语法泡沫的试错设计

IF 7.7 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Changyun Li , Shaoxiang Sun , Lin Jiang , Qi Gao , Zijian Jiang , Lei Xu , Wu Zhaolin
{"title":"应力集中解码:FEA-ML协同作用超越了轻量化Mg-Al语法泡沫的试错设计","authors":"Changyun Li ,&nbsp;Shaoxiang Sun ,&nbsp;Lin Jiang ,&nbsp;Qi Gao ,&nbsp;Zijian Jiang ,&nbsp;Lei Xu ,&nbsp;Wu Zhaolin","doi":"10.1016/j.coco.2025.102586","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving ultra-lightweight magnesium-aluminum syntactic foams (MASFs) with retained compressive strength and energy absorption is hindered by severe property degradation at high hollow microspheres (HMs) volume fractions, primarily driven by microstructural instabilities. We present a synergistic multiscale framework integrating experiments, high-resolution finite element analysis (FEA) decoding the micromechanics of deformation and failure, and machine learning (ML) models trained on combined experimental and simulated data to establish predictive performance maps. FEA simulations quantify how increasing Ni-HMs fraction (30 → 60 vol%) shifts failure from uniform matrix yielding to localized stress concentration around pores and at microsphere contact points, leading to progressive collapse and explaining the observed 48.3 % strength drop. Nickel coating enhances load transfer initially but geometric constraints at high fractions dominate failure, limiting gains. ML models (SVR R<sup>2</sup> = 0.94/0.91) leverage FEA-validated microstructure-performance relationships to achieve high-fidelity prediction. Feature importance analysis confirms volume fraction and sintering temperature as key levers for microstructural control. This framework provides a physics-aware pathway to navigate the lightweighting-strength-absorption trade-off, enabling rapid identification of optimal processing conditions.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"59 ","pages":"Article 102586"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress concentration decoded: FEA-ML synergy overrides trial-and-error design in lightweight Mg-Al syntactic foams\",\"authors\":\"Changyun Li ,&nbsp;Shaoxiang Sun ,&nbsp;Lin Jiang ,&nbsp;Qi Gao ,&nbsp;Zijian Jiang ,&nbsp;Lei Xu ,&nbsp;Wu Zhaolin\",\"doi\":\"10.1016/j.coco.2025.102586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Achieving ultra-lightweight magnesium-aluminum syntactic foams (MASFs) with retained compressive strength and energy absorption is hindered by severe property degradation at high hollow microspheres (HMs) volume fractions, primarily driven by microstructural instabilities. We present a synergistic multiscale framework integrating experiments, high-resolution finite element analysis (FEA) decoding the micromechanics of deformation and failure, and machine learning (ML) models trained on combined experimental and simulated data to establish predictive performance maps. FEA simulations quantify how increasing Ni-HMs fraction (30 → 60 vol%) shifts failure from uniform matrix yielding to localized stress concentration around pores and at microsphere contact points, leading to progressive collapse and explaining the observed 48.3 % strength drop. Nickel coating enhances load transfer initially but geometric constraints at high fractions dominate failure, limiting gains. ML models (SVR R<sup>2</sup> = 0.94/0.91) leverage FEA-validated microstructure-performance relationships to achieve high-fidelity prediction. Feature importance analysis confirms volume fraction and sintering temperature as key levers for microstructural control. This framework provides a physics-aware pathway to navigate the lightweighting-strength-absorption trade-off, enabling rapid identification of optimal processing conditions.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"59 \",\"pages\":\"Article 102586\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925003390\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925003390","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

由于微观结构的不稳定性,在高中空微球(HMs)体积分数下,镁铝复合泡沫(masf)的性能会严重退化,从而阻碍了其获得具有抗压强度和吸能性能的超轻量镁铝复合泡沫(masf)。我们提出了一个协同的多尺度框架,集成了实验,高分辨率有限元分析(FEA)解码变形和破坏的微观力学,以及机器学习(ML)模型,该模型经过实验和模拟数据的联合训练,以建立预测性能图。有限元模拟量化了Ni-HMs分数(30→60 vol%)的增加如何将破坏从均匀基体屈服转变为孔隙周围和微球接触点的局部应力集中,从而导致渐进式崩溃,并解释了观察到的48.3%强度下降。镍涂层最初增强载荷转移,但高分数的几何约束主导了失效,限制了增益。ML模型(SVR R2 = 0.94/0.91)利用有限元验证的微观结构性能关系来实现高保真度预测。特征重要性分析证实了体积分数和烧结温度是微观结构控制的关键杠杆。该框架提供了一种物理感知的途径来导航轻量化-强度-吸收权衡,从而能够快速识别最佳加工条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress concentration decoded: FEA-ML synergy overrides trial-and-error design in lightweight Mg-Al syntactic foams
Achieving ultra-lightweight magnesium-aluminum syntactic foams (MASFs) with retained compressive strength and energy absorption is hindered by severe property degradation at high hollow microspheres (HMs) volume fractions, primarily driven by microstructural instabilities. We present a synergistic multiscale framework integrating experiments, high-resolution finite element analysis (FEA) decoding the micromechanics of deformation and failure, and machine learning (ML) models trained on combined experimental and simulated data to establish predictive performance maps. FEA simulations quantify how increasing Ni-HMs fraction (30 → 60 vol%) shifts failure from uniform matrix yielding to localized stress concentration around pores and at microsphere contact points, leading to progressive collapse and explaining the observed 48.3 % strength drop. Nickel coating enhances load transfer initially but geometric constraints at high fractions dominate failure, limiting gains. ML models (SVR R2 = 0.94/0.91) leverage FEA-validated microstructure-performance relationships to achieve high-fidelity prediction. Feature importance analysis confirms volume fraction and sintering temperature as key levers for microstructural control. This framework provides a physics-aware pathway to navigate the lightweighting-strength-absorption trade-off, enabling rapid identification of optimal processing conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信