Łukasiewicz逻辑中的单模三角剖分:概率相干性的复杂度界限

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tommaso Flaminio , Serafina Lapenta , Sebastiano Napolitano
{"title":"Łukasiewicz逻辑中的单模三角剖分:概率相干性的复杂度界限","authors":"Tommaso Flaminio ,&nbsp;Serafina Lapenta ,&nbsp;Sebastiano Napolitano","doi":"10.1016/j.ijar.2025.109565","DOIUrl":null,"url":null,"abstract":"<div><div>A proof for the NP-containment for the probabilistic coherence problem over events represented by formulas of the infinite-valued Łukasiewicz logic was proposed in <span><span>[1]</span></span>. The geometric and combinatorial argument to prove that complexity bound contains a mistake that is fixed in the present paper. Actually we present two ways to restore that imprecise claim and, by doing so, we show that the main result of that paper is indeed valid.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"187 ","pages":"Article 109565"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unimodular triangulations in Łukasiewicz logic: Complexity bounds of probabilistic coherence\",\"authors\":\"Tommaso Flaminio ,&nbsp;Serafina Lapenta ,&nbsp;Sebastiano Napolitano\",\"doi\":\"10.1016/j.ijar.2025.109565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A proof for the NP-containment for the probabilistic coherence problem over events represented by formulas of the infinite-valued Łukasiewicz logic was proposed in <span><span>[1]</span></span>. The geometric and combinatorial argument to prove that complexity bound contains a mistake that is fixed in the present paper. Actually we present two ways to restore that imprecise claim and, by doing so, we show that the main result of that paper is indeed valid.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"187 \",\"pages\":\"Article 109565\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25002063\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25002063","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

提出了用无穷值Łukasiewicz逻辑的公式表示的事件上的概率相干问题的np包容性的证明。用几何和组合的方法证明了复杂性界中有一个错误,本文修正了这个错误。实际上,我们提出了两种方法来恢复这种不精确的主张,通过这样做,我们表明,该论文的主要结果确实是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unimodular triangulations in Łukasiewicz logic: Complexity bounds of probabilistic coherence
A proof for the NP-containment for the probabilistic coherence problem over events represented by formulas of the infinite-valued Łukasiewicz logic was proposed in [1]. The geometric and combinatorial argument to prove that complexity bound contains a mistake that is fixed in the present paper. Actually we present two ways to restore that imprecise claim and, by doing so, we show that the main result of that paper is indeed valid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信