多金属石墨烯涂层太赫兹超表面生物传感器用于妊娠试验中hCG的高灵敏度检测:模拟研究

K. Vijayakumar , S. Subha , N.K. Anushkannan , Kumaravel Kaliaperumal , U. Arun Kumar
{"title":"多金属石墨烯涂层太赫兹超表面生物传感器用于妊娠试验中hCG的高灵敏度检测:模拟研究","authors":"K. Vijayakumar ,&nbsp;S. Subha ,&nbsp;N.K. Anushkannan ,&nbsp;Kumaravel Kaliaperumal ,&nbsp;U. Arun Kumar","doi":"10.1016/j.sintl.2025.100351","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional pregnancy testing methods face significant limitations including low sensitivity, cross-reactivity issues, and requirement for sophisticated laboratory equipment, particularly in resource-limited settings. This research introduces an innovative terahertz (THz) biosensor using a graphene-metallic hybrid metasurface architecture to improve pregnancy detection by optical sensing of human chorionic gonadotropin (hCG) indicators. The sensor demonstrates remarkable performance with a maximum sensitivity of 1000 GHz/RIU achieved at the optimal resonant frequency of 0.309 THz within the 0.1–0.55 THz frequency band, corresponding to a refractive index of 1.343 RIU. The frequency-dependent sensitivity analysis reveals that the maximum sensitivity of 1000 GHz/RIU is achieved at 0.309 THz, where the electromagnetic field enhancement reaches its peak value. This optimal operating point corresponds to the fundamental resonance mode of the hybrid metasurface structure, where the coupling between the central graphene resonator and the surrounding metallic rings creates the strongest field localization. The sensitivity decreases progressively at frequencies away from this resonant peak, with values of 500 GHz/RIU at 0.310 THz and 200 GHz/RIU at 0.311 THz, demonstrating the critical importance of precise frequency tuning for optimal sensor performance. Comparative analysis shows competitive or superior performance against existing biosensor designs, offering significant potential for point-of-care pregnancy testing applications with enhanced sensitivity, real-time detection capability, and reduced sample preparation requirements.</div></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"7 ","pages":"Article 100351"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimetallic graphene-coated THz metasurface biosensor for high-sensitivity hCG detection in pregnancy testing: A simulation study\",\"authors\":\"K. Vijayakumar ,&nbsp;S. Subha ,&nbsp;N.K. Anushkannan ,&nbsp;Kumaravel Kaliaperumal ,&nbsp;U. Arun Kumar\",\"doi\":\"10.1016/j.sintl.2025.100351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional pregnancy testing methods face significant limitations including low sensitivity, cross-reactivity issues, and requirement for sophisticated laboratory equipment, particularly in resource-limited settings. This research introduces an innovative terahertz (THz) biosensor using a graphene-metallic hybrid metasurface architecture to improve pregnancy detection by optical sensing of human chorionic gonadotropin (hCG) indicators. The sensor demonstrates remarkable performance with a maximum sensitivity of 1000 GHz/RIU achieved at the optimal resonant frequency of 0.309 THz within the 0.1–0.55 THz frequency band, corresponding to a refractive index of 1.343 RIU. The frequency-dependent sensitivity analysis reveals that the maximum sensitivity of 1000 GHz/RIU is achieved at 0.309 THz, where the electromagnetic field enhancement reaches its peak value. This optimal operating point corresponds to the fundamental resonance mode of the hybrid metasurface structure, where the coupling between the central graphene resonator and the surrounding metallic rings creates the strongest field localization. The sensitivity decreases progressively at frequencies away from this resonant peak, with values of 500 GHz/RIU at 0.310 THz and 200 GHz/RIU at 0.311 THz, demonstrating the critical importance of precise frequency tuning for optimal sensor performance. Comparative analysis shows competitive or superior performance against existing biosensor designs, offering significant potential for point-of-care pregnancy testing applications with enhanced sensitivity, real-time detection capability, and reduced sample preparation requirements.</div></div>\",\"PeriodicalId\":21733,\"journal\":{\"name\":\"Sensors International\",\"volume\":\"7 \",\"pages\":\"Article 100351\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666351125000269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351125000269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的妊娠检测方法面临着显著的局限性,包括低灵敏度、交叉反应性问题,以及对复杂实验室设备的要求,特别是在资源有限的情况下。本研究介绍了一种创新的太赫兹(THz)生物传感器,该传感器采用石墨烯-金属混合超表面结构,通过光学传感人类绒毛膜促性腺激素(hCG)指标来改进妊娠检测。在0.1-0.55 THz频段内,在0.309 THz的最佳谐振频率下,传感器的最大灵敏度达到1000 GHz/RIU,对应的折射率为1.343 RIU。频率相关的灵敏度分析表明,在0.309太赫兹时达到1000 GHz/RIU的最大灵敏度,此时电磁场增强达到峰值。这个最佳工作点对应于混合超表面结构的基本共振模式,其中中心石墨烯谐振器与周围金属环之间的耦合产生最强的场局域化。在远离该谐振峰的频率处,灵敏度逐渐降低,在0.310太赫兹处灵敏度为500 GHz/RIU,在0.311太赫兹处灵敏度为200 GHz/RIU,这表明精确的频率调谐对于优化传感器性能至关重要。对比分析显示,与现有的生物传感器设计相比,具有竞争力或优越的性能,具有更高的灵敏度、实时检测能力和更低的样品制备要求,为即时妊娠检测应用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimetallic graphene-coated THz metasurface biosensor for high-sensitivity hCG detection in pregnancy testing: A simulation study
Conventional pregnancy testing methods face significant limitations including low sensitivity, cross-reactivity issues, and requirement for sophisticated laboratory equipment, particularly in resource-limited settings. This research introduces an innovative terahertz (THz) biosensor using a graphene-metallic hybrid metasurface architecture to improve pregnancy detection by optical sensing of human chorionic gonadotropin (hCG) indicators. The sensor demonstrates remarkable performance with a maximum sensitivity of 1000 GHz/RIU achieved at the optimal resonant frequency of 0.309 THz within the 0.1–0.55 THz frequency band, corresponding to a refractive index of 1.343 RIU. The frequency-dependent sensitivity analysis reveals that the maximum sensitivity of 1000 GHz/RIU is achieved at 0.309 THz, where the electromagnetic field enhancement reaches its peak value. This optimal operating point corresponds to the fundamental resonance mode of the hybrid metasurface structure, where the coupling between the central graphene resonator and the surrounding metallic rings creates the strongest field localization. The sensitivity decreases progressively at frequencies away from this resonant peak, with values of 500 GHz/RIU at 0.310 THz and 200 GHz/RIU at 0.311 THz, demonstrating the critical importance of precise frequency tuning for optimal sensor performance. Comparative analysis shows competitive or superior performance against existing biosensor designs, offering significant potential for point-of-care pregnancy testing applications with enhanced sensitivity, real-time detection capability, and reduced sample preparation requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信