冷轧退火双峰H62黄铜组织与力学性能的研究

IF 5.5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Lele Sun , Xingfu Li , Yulan Gong , Xinkun Zhu , Cong Li , Zhilin Wu , Shuwei Quan , Zhengrong Fu , Jingran Yang
{"title":"冷轧退火双峰H62黄铜组织与力学性能的研究","authors":"Lele Sun ,&nbsp;Xingfu Li ,&nbsp;Yulan Gong ,&nbsp;Xinkun Zhu ,&nbsp;Cong Li ,&nbsp;Zhilin Wu ,&nbsp;Shuwei Quan ,&nbsp;Zhengrong Fu ,&nbsp;Jingran Yang","doi":"10.1016/j.matchar.2025.115536","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the microstructure and mechanical properties of H62 brass through cold rolling and short-time annealing, with the aim of achieving a bimodal structure. The results demonstrate that cold rolling significantly enhances strength, with yield strength (YS) and ultimate tensile strength (UTS) increasing by up to 6.6 times and 61.2 %, respectively, compared to the annealed sample, albeit at the expense of reduced ductility. Superior combination of strength and ductility is obtained under short-time annealing at 400 °C for 5 min. Specifically, the H62–2.99-400 °C(5 min) specimen achieves an YS of ∼334.0 MPa, UTS of ∼477.9 MPa, and UE of ∼29.6 %. Microstructure characterization reveals that cold rolling refines grains to ultrafine grain scale, while short-time annealing treatment promotes the formation of a bimodal structure comprising coarse and ultrafine grains. The strengthening mechanisms include high dislocation density, grain refinement, and heterogeneous deformation-induced (HDI) strengthening via geometrically necessary dislocations (GNDs) at soft/hard region interfaces. Additionally, the transformation of the β phase into the α phase during annealing further enhances ductility. This study provides valuable insights into the design of heterostructured materials, suggesting that controlling rolling and annealing processes can be optimized to achieve superior mechanical properties.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"229 ","pages":"Article 115536"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the microstructure and mechanical properties of bimodal H62 brass via cold rolling and annealing\",\"authors\":\"Lele Sun ,&nbsp;Xingfu Li ,&nbsp;Yulan Gong ,&nbsp;Xinkun Zhu ,&nbsp;Cong Li ,&nbsp;Zhilin Wu ,&nbsp;Shuwei Quan ,&nbsp;Zhengrong Fu ,&nbsp;Jingran Yang\",\"doi\":\"10.1016/j.matchar.2025.115536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the microstructure and mechanical properties of H62 brass through cold rolling and short-time annealing, with the aim of achieving a bimodal structure. The results demonstrate that cold rolling significantly enhances strength, with yield strength (YS) and ultimate tensile strength (UTS) increasing by up to 6.6 times and 61.2 %, respectively, compared to the annealed sample, albeit at the expense of reduced ductility. Superior combination of strength and ductility is obtained under short-time annealing at 400 °C for 5 min. Specifically, the H62–2.99-400 °C(5 min) specimen achieves an YS of ∼334.0 MPa, UTS of ∼477.9 MPa, and UE of ∼29.6 %. Microstructure characterization reveals that cold rolling refines grains to ultrafine grain scale, while short-time annealing treatment promotes the formation of a bimodal structure comprising coarse and ultrafine grains. The strengthening mechanisms include high dislocation density, grain refinement, and heterogeneous deformation-induced (HDI) strengthening via geometrically necessary dislocations (GNDs) at soft/hard region interfaces. Additionally, the transformation of the β phase into the α phase during annealing further enhances ductility. This study provides valuable insights into the design of heterostructured materials, suggesting that controlling rolling and annealing processes can be optimized to achieve superior mechanical properties.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"229 \",\"pages\":\"Article 115536\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580325008253\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325008253","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

通过冷轧和短时间退火,研究了H62黄铜的组织和力学性能,以获得双峰组织。结果表明,冷轧显著提高了强度,与退火试样相比,屈服强度(YS)和极限抗拉强度(UTS)分别提高了6.6倍和61.2%,但代价是塑性降低。在400℃、5min的短时退火条件下,获得了较好的强度和延展性。具体来说,H62-2.99-400°C(5分钟)样品的YS为~ 334.0 MPa, UTS为~ 477.9 MPa, UE为~ 29.6%。显微组织表征表明,冷轧使晶粒细化到超细晶粒尺度,而短时间退火则促进形成由粗晶粒和超细晶粒组成的双峰组织。强化机制包括高位错密度、晶粒细化和软/硬界面上几何必要位错(GNDs)引起的非均质变形诱导(HDI)强化。此外,在退火过程中β相转变为α相进一步提高了塑性。该研究为异质结构材料的设计提供了有价值的见解,表明控制轧制和退火工艺可以优化以获得优越的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the microstructure and mechanical properties of bimodal H62 brass via cold rolling and annealing
This study investigates the microstructure and mechanical properties of H62 brass through cold rolling and short-time annealing, with the aim of achieving a bimodal structure. The results demonstrate that cold rolling significantly enhances strength, with yield strength (YS) and ultimate tensile strength (UTS) increasing by up to 6.6 times and 61.2 %, respectively, compared to the annealed sample, albeit at the expense of reduced ductility. Superior combination of strength and ductility is obtained under short-time annealing at 400 °C for 5 min. Specifically, the H62–2.99-400 °C(5 min) specimen achieves an YS of ∼334.0 MPa, UTS of ∼477.9 MPa, and UE of ∼29.6 %. Microstructure characterization reveals that cold rolling refines grains to ultrafine grain scale, while short-time annealing treatment promotes the formation of a bimodal structure comprising coarse and ultrafine grains. The strengthening mechanisms include high dislocation density, grain refinement, and heterogeneous deformation-induced (HDI) strengthening via geometrically necessary dislocations (GNDs) at soft/hard region interfaces. Additionally, the transformation of the β phase into the α phase during annealing further enhances ductility. This study provides valuable insights into the design of heterostructured materials, suggesting that controlling rolling and annealing processes can be optimized to achieve superior mechanical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信