Min Jung Choi , Jung Min Yun , Yu Bin Kim , Seunghwan Kim , Soohyung Park , Seong Jun Kang
{"title":"利用氧空位诱导Nb2O5界面层缺陷态增强qled电荷平衡","authors":"Min Jung Choi , Jung Min Yun , Yu Bin Kim , Seunghwan Kim , Soohyung Park , Seong Jun Kang","doi":"10.1016/j.cap.2025.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the performance of quantum-dot light emitting diodes (QLEDs), we used an Nb<sub>2</sub>O<sub>5</sub> interfacial layer as a buffer layer. The Nb<sub>2</sub>O<sub>5</sub> layer is used as an n-type semiconductor with electron transport properties. In this study, a significant number of defect states resulting from the oxygen vacancies in the Nb<sub>2</sub>O<sub>5</sub> layer were used to create gap states, bringing the valence band maximum (VBM) energy level closer to the Fermi level. This resulted in a lower injection barrier, facilitating efficient hole transport. However, charge imbalance occurs due to electron accumulation in the emission layer, resulting from the mobility difference between electrons and holes. This issue can be resolved by using the Nb<sub>2</sub>O<sub>5</sub> interfacial layer, leading to a current efficiency of 10.1 cd/A, the luminance of 106,194 cd/m<sup>2</sup>, and the EQE of 2.4 %. This represents almost a two-fold performance improvement compared to QLEDs device without the Nb<sub>2</sub>O<sub>5</sub> interfacial layer. These results demonstrate that the ITO/Nb<sub>2</sub>O<sub>5</sub>/V<sub>2</sub>O<sub>5</sub>/TFB/QDs/ZnO/Al structure of the device can enhance the performance of QLEDs by facilitating efficient hole transport through oxygen vacancies.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 64-71"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced charge balance in QLEDs using oxygen vacancy induced defect states in Nb2O5 interfacial layer\",\"authors\":\"Min Jung Choi , Jung Min Yun , Yu Bin Kim , Seunghwan Kim , Soohyung Park , Seong Jun Kang\",\"doi\":\"10.1016/j.cap.2025.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To enhance the performance of quantum-dot light emitting diodes (QLEDs), we used an Nb<sub>2</sub>O<sub>5</sub> interfacial layer as a buffer layer. The Nb<sub>2</sub>O<sub>5</sub> layer is used as an n-type semiconductor with electron transport properties. In this study, a significant number of defect states resulting from the oxygen vacancies in the Nb<sub>2</sub>O<sub>5</sub> layer were used to create gap states, bringing the valence band maximum (VBM) energy level closer to the Fermi level. This resulted in a lower injection barrier, facilitating efficient hole transport. However, charge imbalance occurs due to electron accumulation in the emission layer, resulting from the mobility difference between electrons and holes. This issue can be resolved by using the Nb<sub>2</sub>O<sub>5</sub> interfacial layer, leading to a current efficiency of 10.1 cd/A, the luminance of 106,194 cd/m<sup>2</sup>, and the EQE of 2.4 %. This represents almost a two-fold performance improvement compared to QLEDs device without the Nb<sub>2</sub>O<sub>5</sub> interfacial layer. These results demonstrate that the ITO/Nb<sub>2</sub>O<sub>5</sub>/V<sub>2</sub>O<sub>5</sub>/TFB/QDs/ZnO/Al structure of the device can enhance the performance of QLEDs by facilitating efficient hole transport through oxygen vacancies.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"80 \",\"pages\":\"Pages 64-71\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156717392500183X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156717392500183X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced charge balance in QLEDs using oxygen vacancy induced defect states in Nb2O5 interfacial layer
To enhance the performance of quantum-dot light emitting diodes (QLEDs), we used an Nb2O5 interfacial layer as a buffer layer. The Nb2O5 layer is used as an n-type semiconductor with electron transport properties. In this study, a significant number of defect states resulting from the oxygen vacancies in the Nb2O5 layer were used to create gap states, bringing the valence band maximum (VBM) energy level closer to the Fermi level. This resulted in a lower injection barrier, facilitating efficient hole transport. However, charge imbalance occurs due to electron accumulation in the emission layer, resulting from the mobility difference between electrons and holes. This issue can be resolved by using the Nb2O5 interfacial layer, leading to a current efficiency of 10.1 cd/A, the luminance of 106,194 cd/m2, and the EQE of 2.4 %. This represents almost a two-fold performance improvement compared to QLEDs device without the Nb2O5 interfacial layer. These results demonstrate that the ITO/Nb2O5/V2O5/TFB/QDs/ZnO/Al structure of the device can enhance the performance of QLEDs by facilitating efficient hole transport through oxygen vacancies.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.