基于无铅basrtio3基多层陶瓷的互指结构衍生的可扩展全固态电热冷却装置

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-09-12 DOI:10.1016/j.joule.2025.102128
Houzhu He, Xiang Niu, Zhiyi Xu, Junying Lai, Xuhui Guan, Wei Liang, Huanwei Liu, Wenhan Zeng, Yuliang Yu, Mingtao Xu, Yuleng Jiang, Zhi Yang, Bo Liang, Tao Tao, Yingbang Yao, Xiaobo Zhao, Xiaodong Jian, Sheng-Guo Lu
{"title":"基于无铅basrtio3基多层陶瓷的互指结构衍生的可扩展全固态电热冷却装置","authors":"Houzhu He, Xiang Niu, Zhiyi Xu, Junying Lai, Xuhui Guan, Wei Liang, Huanwei Liu, Wenhan Zeng, Yuliang Yu, Mingtao Xu, Yuleng Jiang, Zhi Yang, Bo Liang, Tao Tao, Yingbang Yao, Xiaobo Zhao, Xiaodong Jian, Sheng-Guo Lu","doi":"10.1016/j.joule.2025.102128","DOIUrl":null,"url":null,"abstract":"Solid-state electrocaloric (EC) refrigeration is regarded as a promising alternative to traditional vapor-compression refrigeration. However, good cooling materials are still one of the challenges for prototypes. In this work, a dual-strategy scalable interdigital structure for solid-state EC refrigeration devices based on base metallic electrode and lead-free BaSrTiO<sub>3</sub>-based multilayer ceramics (MLCs) was designed and fabricated. Thermal pads are used as thermal interface materials in the device. A maximum temperature span (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;mtext is=\"true\"&gt;span&lt;/mtext&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 2104.4 1096.9\" width=\"4.888ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(584,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-73\"></use><use transform=\"scale(0.707)\" x=\"394\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"951\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1451\" xlink:href=\"#MJMAIN-6E\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">T</mi><mtext is=\"true\">span</mtext></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">T</mi><mtext is=\"true\">span</mtext></msub></mrow></math></script></span>) of 0.66 K and a cooling power of 52 mW at 0 K <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mi is=\"true\"&gt;p&lt;/mi&gt;&lt;mi is=\"true\"&gt;a&lt;/mi&gt;&lt;mi is=\"true\"&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 2171.5 1096.9\" width=\"5.044ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(584,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-73\"></use></g><g is=\"true\" transform=\"translate(331,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-70\"></use></g><g is=\"true\" transform=\"translate(688,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-61\"></use></g><g is=\"true\" transform=\"translate(1062,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6E\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">T</mi><mrow is=\"true\"><mi is=\"true\">s</mi><mi is=\"true\">p</mi><mi is=\"true\">a</mi><mi is=\"true\">n</mi></mrow></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">T</mi><mrow is=\"true\"><mi is=\"true\">s</mi><mi is=\"true\">p</mi><mi is=\"true\">a</mi><mi is=\"true\">n</mi></mrow></msub></mrow></math></script></span> was obtained in a single-stage device with a cooling power density of 49.9 W/kg and 282 W/L, which is larger than that of prototypes based on BaTiO<sub>3</sub> (19 W/kg and 110 W/L) and PbScTaO<sub>3</sub> (18 W/kg and 140 W/L) MLCs. Furthermore, a maximum <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;mtext is=\"true\"&gt;span&lt;/mtext&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 2104.4 1096.9\" width=\"4.888ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(584,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-73\"></use><use transform=\"scale(0.707)\" x=\"394\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"951\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1451\" xlink:href=\"#MJMAIN-6E\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">T</mi><mtext is=\"true\">span</mtext></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">T</mi><mtext is=\"true\">span</mtext></msub></mrow></math></script></span> of 7.13 K and a cooling power of 119 mW at 0 K <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;mtext is=\"true\"&gt;span&lt;/mtext&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 2104.4 1096.9\" width=\"4.888ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(584,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-73\"></use><use transform=\"scale(0.707)\" x=\"394\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"951\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1451\" xlink:href=\"#MJMAIN-6E\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">T</mi><mtext is=\"true\">span</mtext></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">T</mi><mtext is=\"true\">span</mtext></msub></mrow></math></script></span> can also be realized using the scaling-up strategy.","PeriodicalId":343,"journal":{"name":"Joule","volume":"24 1","pages":""},"PeriodicalIF":35.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interdigitated structure-derived scalable all-solid-state electrocaloric cooling device using lead-free BaSrTiO3-based multilayer ceramics\",\"authors\":\"Houzhu He, Xiang Niu, Zhiyi Xu, Junying Lai, Xuhui Guan, Wei Liang, Huanwei Liu, Wenhan Zeng, Yuliang Yu, Mingtao Xu, Yuleng Jiang, Zhi Yang, Bo Liang, Tao Tao, Yingbang Yao, Xiaobo Zhao, Xiaodong Jian, Sheng-Guo Lu\",\"doi\":\"10.1016/j.joule.2025.102128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state electrocaloric (EC) refrigeration is regarded as a promising alternative to traditional vapor-compression refrigeration. However, good cooling materials are still one of the challenges for prototypes. In this work, a dual-strategy scalable interdigital structure for solid-state EC refrigeration devices based on base metallic electrode and lead-free BaSrTiO<sub>3</sub>-based multilayer ceramics (MLCs) was designed and fabricated. Thermal pads are used as thermal interface materials in the device. A maximum temperature span (<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;T&lt;/mi&gt;&lt;mtext is=\\\"true\\\"&gt;span&lt;/mtext&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.548ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -747.2 2104.4 1096.9\\\" width=\\\"4.888ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(584,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-73\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"394\\\" xlink:href=\\\"#MJMAIN-70\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"951\\\" xlink:href=\\\"#MJMAIN-61\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1451\\\" xlink:href=\\\"#MJMAIN-6E\\\" y=\\\"0\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mtext is=\\\"true\\\">span</mtext></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mtext is=\\\"true\\\">span</mtext></msub></mrow></math></script></span>) of 0.66 K and a cooling power of 52 mW at 0 K <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;T&lt;/mi&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;s&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;p&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;a&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.548ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -747.2 2171.5 1096.9\\\" width=\\\"5.044ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(584,-150)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-73\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(331,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-70\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(688,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-61\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1062,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-6E\\\"></use></g></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">s</mi><mi is=\\\"true\\\">p</mi><mi is=\\\"true\\\">a</mi><mi is=\\\"true\\\">n</mi></mrow></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">s</mi><mi is=\\\"true\\\">p</mi><mi is=\\\"true\\\">a</mi><mi is=\\\"true\\\">n</mi></mrow></msub></mrow></math></script></span> was obtained in a single-stage device with a cooling power density of 49.9 W/kg and 282 W/L, which is larger than that of prototypes based on BaTiO<sub>3</sub> (19 W/kg and 110 W/L) and PbScTaO<sub>3</sub> (18 W/kg and 140 W/L) MLCs. Furthermore, a maximum <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;T&lt;/mi&gt;&lt;mtext is=\\\"true\\\"&gt;span&lt;/mtext&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.548ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -747.2 2104.4 1096.9\\\" width=\\\"4.888ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(584,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-73\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"394\\\" xlink:href=\\\"#MJMAIN-70\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"951\\\" xlink:href=\\\"#MJMAIN-61\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1451\\\" xlink:href=\\\"#MJMAIN-6E\\\" y=\\\"0\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mtext is=\\\"true\\\">span</mtext></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mtext is=\\\"true\\\">span</mtext></msub></mrow></math></script></span> of 7.13 K and a cooling power of 119 mW at 0 K <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;T&lt;/mi&gt;&lt;mtext is=\\\"true\\\"&gt;span&lt;/mtext&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.548ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -747.2 2104.4 1096.9\\\" width=\\\"4.888ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(584,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-73\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"394\\\" xlink:href=\\\"#MJMAIN-70\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"951\\\" xlink:href=\\\"#MJMAIN-61\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1451\\\" xlink:href=\\\"#MJMAIN-6E\\\" y=\\\"0\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mtext is=\\\"true\\\">span</mtext></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mtext is=\\\"true\\\">span</mtext></msub></mrow></math></script></span> can also be realized using the scaling-up strategy.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.102128\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102128","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固态电热制冷(EC)被认为是传统蒸汽压缩制冷的一种有前途的替代方案。然而,良好的冷却材料仍然是原型的挑战之一。本文设计并制造了一种基于基材金属电极和无铅basrtio3基多层陶瓷(MLCs)的固态EC制冷装置双策略可扩展数字间结构。热垫是设备的热界面材料。单级装置的最大温度跨度(TspanTspan)为0.66 K,在0 K时的冷却功率为52 mW,冷却功率密度为49.9 W/kg和282 W/L,大于基于BaTiO3 (19 W/kg和110 W/L)和PbScTaO3 (18 W/kg和140 W/L) MLCs的原型。此外,采用放大策略也可以实现最大TspanTspan为7.13 K,在0 K TspanTspan下的冷却功率为119 mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interdigitated structure-derived scalable all-solid-state electrocaloric cooling device using lead-free BaSrTiO3-based multilayer ceramics
Solid-state electrocaloric (EC) refrigeration is regarded as a promising alternative to traditional vapor-compression refrigeration. However, good cooling materials are still one of the challenges for prototypes. In this work, a dual-strategy scalable interdigital structure for solid-state EC refrigeration devices based on base metallic electrode and lead-free BaSrTiO3-based multilayer ceramics (MLCs) was designed and fabricated. Thermal pads are used as thermal interface materials in the device. A maximum temperature span (Tspan) of 0.66 K and a cooling power of 52 mW at 0 K Tspan was obtained in a single-stage device with a cooling power density of 49.9 W/kg and 282 W/L, which is larger than that of prototypes based on BaTiO3 (19 W/kg and 110 W/L) and PbScTaO3 (18 W/kg and 140 W/L) MLCs. Furthermore, a maximum Tspan of 7.13 K and a cooling power of 119 mW at 0 K Tspan can also be realized using the scaling-up strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信