{"title":"深度分组图像配准的贝叶斯无监督解缠方法。","authors":"Xinzhe Luo,Xin Wang,Linda Shapiro,Chun Yuan,Jianfeng Feng,Xiahai Zhuang","doi":"10.1109/tpami.2025.3609521","DOIUrl":null,"url":null,"abstract":"This article presents a general Bayesian learning framework for multi-modal groupwise image registration. The method builds on probabilistic modelling of the image generative process, where the underlying common anatomy and geometric variations of the observed images are explicitly disentangled as latent variables. Therefore, groupwise image registration is achieved via hierarchical Bayesian inference. We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables, where the registration parameters can be explicitly estimated in a mathematically interpretable fashion. Remarkably, this new paradigm learns groupwise image registration in an unsupervised closed-loop self-reconstruction process, sparing the burden of designing complex image-based similarity measures. The computationally efficient disentangled network architecture is also inherently scalable and flexible, allowing for groupwise registration on large-scale image groups with variable sizes. Furthermore, the inferred structural representations from multi-modal images via disentanglement learning are capable of capturing the latent anatomy of the observations with visual semantics. Extensive experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images. The results have demonstrated the superiority of our method over conventional similarity-based approaches in terms of accuracy, efficiency, scalability, and interpretability.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"11 1","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration.\",\"authors\":\"Xinzhe Luo,Xin Wang,Linda Shapiro,Chun Yuan,Jianfeng Feng,Xiahai Zhuang\",\"doi\":\"10.1109/tpami.2025.3609521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a general Bayesian learning framework for multi-modal groupwise image registration. The method builds on probabilistic modelling of the image generative process, where the underlying common anatomy and geometric variations of the observed images are explicitly disentangled as latent variables. Therefore, groupwise image registration is achieved via hierarchical Bayesian inference. We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables, where the registration parameters can be explicitly estimated in a mathematically interpretable fashion. Remarkably, this new paradigm learns groupwise image registration in an unsupervised closed-loop self-reconstruction process, sparing the burden of designing complex image-based similarity measures. The computationally efficient disentangled network architecture is also inherently scalable and flexible, allowing for groupwise registration on large-scale image groups with variable sizes. Furthermore, the inferred structural representations from multi-modal images via disentanglement learning are capable of capturing the latent anatomy of the observations with visual semantics. Extensive experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images. The results have demonstrated the superiority of our method over conventional similarity-based approaches in terms of accuracy, efficiency, scalability, and interpretability.\",\"PeriodicalId\":13426,\"journal\":{\"name\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tpami.2025.3609521\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tpami.2025.3609521","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration.
This article presents a general Bayesian learning framework for multi-modal groupwise image registration. The method builds on probabilistic modelling of the image generative process, where the underlying common anatomy and geometric variations of the observed images are explicitly disentangled as latent variables. Therefore, groupwise image registration is achieved via hierarchical Bayesian inference. We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables, where the registration parameters can be explicitly estimated in a mathematically interpretable fashion. Remarkably, this new paradigm learns groupwise image registration in an unsupervised closed-loop self-reconstruction process, sparing the burden of designing complex image-based similarity measures. The computationally efficient disentangled network architecture is also inherently scalable and flexible, allowing for groupwise registration on large-scale image groups with variable sizes. Furthermore, the inferred structural representations from multi-modal images via disentanglement learning are capable of capturing the latent anatomy of the observations with visual semantics. Extensive experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images. The results have demonstrated the superiority of our method over conventional similarity-based approaches in terms of accuracy, efficiency, scalability, and interpretability.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.