{"title":"含ASCH结构域蛋白的结构分析及其对核苷酸加工的意义","authors":"Chunyan Meng, Xiaoyan Shi, Wenting Guo, Xing Jian, Jie Zhao, Yan Wen, Ruiqi Wang, Yu Li, Sha Xu, Haitao Chen, Jiayu Zhang, Mingjia Chen, Hao Chen, Baixing Wu","doi":"10.1016/j.str.2025.08.015","DOIUrl":null,"url":null,"abstract":"ASC-1 homology (ASCH) domain family proteins are believed to play essential roles in RNA metabolism, but detailed structural and functional information is limited. Research has shown that the <em>E. coli</em> enzyme YqfB, which contains an ASCH domain, has amidohydrolase activity, converting <em>N</em><sup>4</sup>-acetylcytidine (ac<sup>4</sup>C) RNA nucleoside into cytidine. Here, we present the crystal structures of <em>Ec</em>YqfB both in its unbound state and bound to a substrate. Our analysis reveals how the substrate interacts with the enzyme, offering insights into its catalytic mechanism. <em>In vivo</em> experiments further show that deleting <em>Ec</em>YqfB does not change overall ac<sup>4</sup>C levels across various RNA types, indicating that <em>Ec</em>YqfB specifically functions in ac<sup>4</sup>C nucleoside metabolism. We also determined the structures of two homologous proteins: mouse EOLA1 and the human TRIP4-ASCH domain, highlighting differences in their substrate preferences. These findings offer important insights for future research into the structure and function of the ASCH domain protein family.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"24 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural analysis of ASCH domain-containing proteins and their implications for nucleotide processing\",\"authors\":\"Chunyan Meng, Xiaoyan Shi, Wenting Guo, Xing Jian, Jie Zhao, Yan Wen, Ruiqi Wang, Yu Li, Sha Xu, Haitao Chen, Jiayu Zhang, Mingjia Chen, Hao Chen, Baixing Wu\",\"doi\":\"10.1016/j.str.2025.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ASC-1 homology (ASCH) domain family proteins are believed to play essential roles in RNA metabolism, but detailed structural and functional information is limited. Research has shown that the <em>E. coli</em> enzyme YqfB, which contains an ASCH domain, has amidohydrolase activity, converting <em>N</em><sup>4</sup>-acetylcytidine (ac<sup>4</sup>C) RNA nucleoside into cytidine. Here, we present the crystal structures of <em>Ec</em>YqfB both in its unbound state and bound to a substrate. Our analysis reveals how the substrate interacts with the enzyme, offering insights into its catalytic mechanism. <em>In vivo</em> experiments further show that deleting <em>Ec</em>YqfB does not change overall ac<sup>4</sup>C levels across various RNA types, indicating that <em>Ec</em>YqfB specifically functions in ac<sup>4</sup>C nucleoside metabolism. We also determined the structures of two homologous proteins: mouse EOLA1 and the human TRIP4-ASCH domain, highlighting differences in their substrate preferences. These findings offer important insights for future research into the structure and function of the ASCH domain protein family.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2025.08.015\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.08.015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural analysis of ASCH domain-containing proteins and their implications for nucleotide processing
ASC-1 homology (ASCH) domain family proteins are believed to play essential roles in RNA metabolism, but detailed structural and functional information is limited. Research has shown that the E. coli enzyme YqfB, which contains an ASCH domain, has amidohydrolase activity, converting N4-acetylcytidine (ac4C) RNA nucleoside into cytidine. Here, we present the crystal structures of EcYqfB both in its unbound state and bound to a substrate. Our analysis reveals how the substrate interacts with the enzyme, offering insights into its catalytic mechanism. In vivo experiments further show that deleting EcYqfB does not change overall ac4C levels across various RNA types, indicating that EcYqfB specifically functions in ac4C nucleoside metabolism. We also determined the structures of two homologous proteins: mouse EOLA1 and the human TRIP4-ASCH domain, highlighting differences in their substrate preferences. These findings offer important insights for future research into the structure and function of the ASCH domain protein family.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.