Cornelis Blauwendraat, Huw R Morris, Kendall Van Keuren-Jensen, Alastair J Noyce, Andrew B Singleton
{"title":"帕金森病的遗传、环境和病理危险因素的时间顺序:为预防铺平道路","authors":"Cornelis Blauwendraat, Huw R Morris, Kendall Van Keuren-Jensen, Alastair J Noyce, Andrew B Singleton","doi":"10.1016/s1474-4422(25)00271-6","DOIUrl":null,"url":null,"abstract":"Genetics research in Parkinson's disease has identified over 100 risk loci, yet translating these findings into understanding of disease mechanisms, clinical and pathological heterogeneity, and disease progression remains a challenge. This task requires exploring how genetic risk factors operate over time, interact with environmental factors, and contribute to the diverse ways in which disease manifests. The development of α-synuclein seeding amplification assays (SAAs) offers the opportunity to understand Parkinson's disease pathogenesis and heterogeneity, and drive the development of new disease-modifying and prevention interventions. Emerging biomarker tools, such as α-synuclein SAAs, hold great promise in uncovering the pathological underpinnings of Parkinson's disease and related disorders. Integrating α-synuclein SAAs with genetic data will redefine Parkinson's disease biology and, importantly, identify the temporal sequence of genetic risk, whether that be as a driver of an initiating pathological event or as a response to an initiating stochastic, environmental, or other genetic event. Furthermore, studying genetic and environmental influences in individuals who are asymptomatic but have detectable α-synuclein pathology will provide actionable insights for disease prevention and therapeutic interventions.","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The temporal order of genetic, environmental, and pathological risk factors in Parkinson's disease: paving the way to prevention\",\"authors\":\"Cornelis Blauwendraat, Huw R Morris, Kendall Van Keuren-Jensen, Alastair J Noyce, Andrew B Singleton\",\"doi\":\"10.1016/s1474-4422(25)00271-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetics research in Parkinson's disease has identified over 100 risk loci, yet translating these findings into understanding of disease mechanisms, clinical and pathological heterogeneity, and disease progression remains a challenge. This task requires exploring how genetic risk factors operate over time, interact with environmental factors, and contribute to the diverse ways in which disease manifests. The development of α-synuclein seeding amplification assays (SAAs) offers the opportunity to understand Parkinson's disease pathogenesis and heterogeneity, and drive the development of new disease-modifying and prevention interventions. Emerging biomarker tools, such as α-synuclein SAAs, hold great promise in uncovering the pathological underpinnings of Parkinson's disease and related disorders. Integrating α-synuclein SAAs with genetic data will redefine Parkinson's disease biology and, importantly, identify the temporal sequence of genetic risk, whether that be as a driver of an initiating pathological event or as a response to an initiating stochastic, environmental, or other genetic event. Furthermore, studying genetic and environmental influences in individuals who are asymptomatic but have detectable α-synuclein pathology will provide actionable insights for disease prevention and therapeutic interventions.\",\"PeriodicalId\":22676,\"journal\":{\"name\":\"The Lancet Neurology\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Lancet Neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/s1474-4422(25)00271-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/s1474-4422(25)00271-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The temporal order of genetic, environmental, and pathological risk factors in Parkinson's disease: paving the way to prevention
Genetics research in Parkinson's disease has identified over 100 risk loci, yet translating these findings into understanding of disease mechanisms, clinical and pathological heterogeneity, and disease progression remains a challenge. This task requires exploring how genetic risk factors operate over time, interact with environmental factors, and contribute to the diverse ways in which disease manifests. The development of α-synuclein seeding amplification assays (SAAs) offers the opportunity to understand Parkinson's disease pathogenesis and heterogeneity, and drive the development of new disease-modifying and prevention interventions. Emerging biomarker tools, such as α-synuclein SAAs, hold great promise in uncovering the pathological underpinnings of Parkinson's disease and related disorders. Integrating α-synuclein SAAs with genetic data will redefine Parkinson's disease biology and, importantly, identify the temporal sequence of genetic risk, whether that be as a driver of an initiating pathological event or as a response to an initiating stochastic, environmental, or other genetic event. Furthermore, studying genetic and environmental influences in individuals who are asymptomatic but have detectable α-synuclein pathology will provide actionable insights for disease prevention and therapeutic interventions.