{"title":"中性粒细胞胞外陷阱:形成,病理作用,和纳米粒子为基础的治疗靶向策略","authors":"Nina Filipczak , Satya Siva Kishan Yalamarty , Xiang Li , Tanvi Vinod Pathrikar , Roshani Pinapati , Bijal Vanjara , Vladimir Torchilin","doi":"10.1016/j.jconrel.2025.114220","DOIUrl":null,"url":null,"abstract":"<div><div>Neutrophil extracellular traps (NETs) are large, web-like DNA structures released by neutrophils, coated with histones and antimicrobial proteins. They serve as a crucial defense mechanism for neutrophils against microbial invasion, playing a significant role in eliminating microorganisms such as bacteria, fungi, and viruses. While NETs are primarily recognized for their role in microbial defense, growing evidence indicates that excessive NET formation, triggered by physical and chemical stimuli, pathogens, or pathological factors, can worsen inflammation and cause organ damage. Understanding NETs' presence in various tissues and body fluids is crucial for elucidating their contribution to disease etiopathogenesis. By designing nanoparticles that can either prevent NET formation or facilitate their degradation, researchers aim to mitigate the harmful effects of excessive NETs. These nanotechnological interventions can be tailored to specifically target the molecular components of NETs, enhancing treatment precision and efficacy. Furthermore, nanoparticles can deliver therapeutic agents directly to inflammation sites, reducing systemic side effects and improving patient outcomes. This review summarizes the role of NETs in various pathologies, focusing on strategies to inhibit NETosis, including mechanisms of pathogen evasion, and the use of nanodelivery systems to enhance the efficiency of NETs inhibition or removal.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"387 ","pages":"Article 114220"},"PeriodicalIF":11.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrophil extracellular traps: Formation, pathological roles, and nanoparticle-based therapeutic targeting strategies\",\"authors\":\"Nina Filipczak , Satya Siva Kishan Yalamarty , Xiang Li , Tanvi Vinod Pathrikar , Roshani Pinapati , Bijal Vanjara , Vladimir Torchilin\",\"doi\":\"10.1016/j.jconrel.2025.114220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neutrophil extracellular traps (NETs) are large, web-like DNA structures released by neutrophils, coated with histones and antimicrobial proteins. They serve as a crucial defense mechanism for neutrophils against microbial invasion, playing a significant role in eliminating microorganisms such as bacteria, fungi, and viruses. While NETs are primarily recognized for their role in microbial defense, growing evidence indicates that excessive NET formation, triggered by physical and chemical stimuli, pathogens, or pathological factors, can worsen inflammation and cause organ damage. Understanding NETs' presence in various tissues and body fluids is crucial for elucidating their contribution to disease etiopathogenesis. By designing nanoparticles that can either prevent NET formation or facilitate their degradation, researchers aim to mitigate the harmful effects of excessive NETs. These nanotechnological interventions can be tailored to specifically target the molecular components of NETs, enhancing treatment precision and efficacy. Furthermore, nanoparticles can deliver therapeutic agents directly to inflammation sites, reducing systemic side effects and improving patient outcomes. This review summarizes the role of NETs in various pathologies, focusing on strategies to inhibit NETosis, including mechanisms of pathogen evasion, and the use of nanodelivery systems to enhance the efficiency of NETs inhibition or removal.</div></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\"387 \",\"pages\":\"Article 114220\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365925008326\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925008326","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Neutrophil extracellular traps (NETs) are large, web-like DNA structures released by neutrophils, coated with histones and antimicrobial proteins. They serve as a crucial defense mechanism for neutrophils against microbial invasion, playing a significant role in eliminating microorganisms such as bacteria, fungi, and viruses. While NETs are primarily recognized for their role in microbial defense, growing evidence indicates that excessive NET formation, triggered by physical and chemical stimuli, pathogens, or pathological factors, can worsen inflammation and cause organ damage. Understanding NETs' presence in various tissues and body fluids is crucial for elucidating their contribution to disease etiopathogenesis. By designing nanoparticles that can either prevent NET formation or facilitate their degradation, researchers aim to mitigate the harmful effects of excessive NETs. These nanotechnological interventions can be tailored to specifically target the molecular components of NETs, enhancing treatment precision and efficacy. Furthermore, nanoparticles can deliver therapeutic agents directly to inflammation sites, reducing systemic side effects and improving patient outcomes. This review summarizes the role of NETs in various pathologies, focusing on strategies to inhibit NETosis, including mechanisms of pathogen evasion, and the use of nanodelivery systems to enhance the efficiency of NETs inhibition or removal.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.