巨噬细胞膜伪装双药物仿生ph响应纳米药物协同抗真菌-抗氧化治疗口腔念珠菌病。

IF 9.6 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Kaiwen Bao , Yunfan Li , Yantao Li , Shuai Wu , Sheng Ni , Xiong Zhao , Ya Wang , Yi Liang , Qiao Chen , Xinmei Duan , Da Sun , Li Zhu , Wei Wu
{"title":"巨噬细胞膜伪装双药物仿生ph响应纳米药物协同抗真菌-抗氧化治疗口腔念珠菌病。","authors":"Kaiwen Bao ,&nbsp;Yunfan Li ,&nbsp;Yantao Li ,&nbsp;Shuai Wu ,&nbsp;Sheng Ni ,&nbsp;Xiong Zhao ,&nbsp;Ya Wang ,&nbsp;Yi Liang ,&nbsp;Qiao Chen ,&nbsp;Xinmei Duan ,&nbsp;Da Sun ,&nbsp;Li Zhu ,&nbsp;Wei Wu","doi":"10.1016/j.actbio.2025.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating challenges of antifungal drug resistance, toxicity, and limited therapeutic strategies for oral candidiasis (OC) necessitate innovative treatment approaches. This study developed a pH-responsive baicalein-based nanocarrier by coupling baicalein with phenylboronic acid-functionalized polymethyl vinyl ether-maleic anhydride to encapsulate amphotericin B (AMB). The nanocarrier was further camouflaged with macrophage membranes, forming a biomimetic dual-drug nanoplatform (MPPB@A NPs) for synergistic antifungal-antioxidant therapy against OC. MPPB@A NPs leverage macrophage membrane coating to enhance active targeting of β-glucans on <em>C. albicans</em>, while borate ester bonds enable pH-responsive drug release at pH 5.5. MPPB@A NPs were demonstrated to effectively disrupt <em>C. albicans</em> biofilms and scavenge reactive oxygen species (ROS). In murine OC models, MPPB@A NPs significantly reduced oral fungal burden (11.17 % of the free AMB group) and alleviated oxidative stress. Subsequently, ROS-mediated inflammation was reduced. Furthermore, MPPB@A NPs exhibited the favorable biocompatibility, including hemolysis rates below 5 %, reduced cytotoxicity, and significantly lower nephrotoxicity compared to free AMB. Therefore, this study provides a promising strategy to overcome AMB toxicity and resistance while promoting the synergistic antifungal-antioxidant therapy for OC management.</div></div><div><h3>Statement of Significance</h3><div>Current oral candidiasis therapies face challenges of drug resistance and systemic toxicity. This study has the potential to address these limitations using a biomimetic nanoplatform combining macrophage membrane camouflage with a pH-responsive carrier, enabling targeted dual-drug delivery to infection sites. The membrane coating facilitates tissue accumulation, while pH-triggered release delivers amphotericin B within acidic fungal biofilms, disrupting Candida albicans. Baicalein, as a nanocarrier component, exhibits antioxidant and anti-inflammatory effects. This strategy synergistically combats fungal infection and associated oxidative stress damage while significantly enhancing drug biocompatibility and reducing systemic toxicity, offering a clinically translatable solution.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"205 ","pages":"Pages 568-583"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrophage membrane-camouflaged dual drug-based biomimetic pH-responsive nanomedicine for synergistic antifungal-antioxidant therapy in oral candidiasis\",\"authors\":\"Kaiwen Bao ,&nbsp;Yunfan Li ,&nbsp;Yantao Li ,&nbsp;Shuai Wu ,&nbsp;Sheng Ni ,&nbsp;Xiong Zhao ,&nbsp;Ya Wang ,&nbsp;Yi Liang ,&nbsp;Qiao Chen ,&nbsp;Xinmei Duan ,&nbsp;Da Sun ,&nbsp;Li Zhu ,&nbsp;Wei Wu\",\"doi\":\"10.1016/j.actbio.2025.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The escalating challenges of antifungal drug resistance, toxicity, and limited therapeutic strategies for oral candidiasis (OC) necessitate innovative treatment approaches. This study developed a pH-responsive baicalein-based nanocarrier by coupling baicalein with phenylboronic acid-functionalized polymethyl vinyl ether-maleic anhydride to encapsulate amphotericin B (AMB). The nanocarrier was further camouflaged with macrophage membranes, forming a biomimetic dual-drug nanoplatform (MPPB@A NPs) for synergistic antifungal-antioxidant therapy against OC. MPPB@A NPs leverage macrophage membrane coating to enhance active targeting of β-glucans on <em>C. albicans</em>, while borate ester bonds enable pH-responsive drug release at pH 5.5. MPPB@A NPs were demonstrated to effectively disrupt <em>C. albicans</em> biofilms and scavenge reactive oxygen species (ROS). In murine OC models, MPPB@A NPs significantly reduced oral fungal burden (11.17 % of the free AMB group) and alleviated oxidative stress. Subsequently, ROS-mediated inflammation was reduced. Furthermore, MPPB@A NPs exhibited the favorable biocompatibility, including hemolysis rates below 5 %, reduced cytotoxicity, and significantly lower nephrotoxicity compared to free AMB. Therefore, this study provides a promising strategy to overcome AMB toxicity and resistance while promoting the synergistic antifungal-antioxidant therapy for OC management.</div></div><div><h3>Statement of Significance</h3><div>Current oral candidiasis therapies face challenges of drug resistance and systemic toxicity. This study has the potential to address these limitations using a biomimetic nanoplatform combining macrophage membrane camouflage with a pH-responsive carrier, enabling targeted dual-drug delivery to infection sites. The membrane coating facilitates tissue accumulation, while pH-triggered release delivers amphotericin B within acidic fungal biofilms, disrupting Candida albicans. Baicalein, as a nanocarrier component, exhibits antioxidant and anti-inflammatory effects. This strategy synergistically combats fungal infection and associated oxidative stress damage while significantly enhancing drug biocompatibility and reducing systemic toxicity, offering a clinically translatable solution.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"205 \",\"pages\":\"Pages 568-583\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706125006713\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125006713","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

口腔念珠菌病(OC)的抗真菌药物耐药性,毒性和有限的治疗策略不断升级的挑战需要创新的治疗方法。本研究将黄芩素与苯硼酸功能化聚甲基乙烯醚-马来酸酐偶联,制备了一种ph响应型的黄芩素纳米载体,包封两性霉素B (AMB)。纳米载体被巨噬细胞膜进一步伪装,形成一个仿生双药纳米平台(MPPB@A NPs),用于协同抗真菌-抗氧化治疗OC。MPPB@A NPs利用巨噬细胞膜涂层增强β-葡聚糖对白色念珠菌的活性靶向,而硼酸酯键使pH响应性药物在pH 5.5下释放。MPPB@A NPs被证明可以有效地破坏白色念珠菌的生物膜并清除活性氧(ROS)。在小鼠OC模型中,MPPB@A NPs显著降低了口腔真菌负荷(占游离AMB组的11.17%),并减轻了氧化应激。随后,ros介导的炎症减轻。此外,MPPB@A NPs表现出良好的生物相容性,与游离AMB相比,溶血率低于5%,细胞毒性降低,肾毒性显著降低。因此,本研究为克服AMB的毒性和耐药性提供了一个有希望的策略,同时促进了抗真菌-抗氧化协同治疗的OC管理。意义声明:目前的口腔念珠菌病治疗面临着耐药性和全身毒性的挑战。这项研究有可能解决这些限制,使用仿生纳米平台结合巨噬细胞膜伪装和ph响应载体,实现靶向双药递送到感染部位。膜涂层促进组织积累,而ph触发释放在酸性真菌生物膜内释放两性霉素B,破坏白色念珠菌。黄芩素作为一种纳米载体成分,具有抗氧化和抗炎作用。该策略协同对抗真菌感染和相关的氧化应激损伤,同时显着提高药物生物相容性和降低全身毒性,提供临床可翻译的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macrophage membrane-camouflaged dual drug-based biomimetic pH-responsive nanomedicine for synergistic antifungal-antioxidant therapy in oral candidiasis
The escalating challenges of antifungal drug resistance, toxicity, and limited therapeutic strategies for oral candidiasis (OC) necessitate innovative treatment approaches. This study developed a pH-responsive baicalein-based nanocarrier by coupling baicalein with phenylboronic acid-functionalized polymethyl vinyl ether-maleic anhydride to encapsulate amphotericin B (AMB). The nanocarrier was further camouflaged with macrophage membranes, forming a biomimetic dual-drug nanoplatform (MPPB@A NPs) for synergistic antifungal-antioxidant therapy against OC. MPPB@A NPs leverage macrophage membrane coating to enhance active targeting of β-glucans on C. albicans, while borate ester bonds enable pH-responsive drug release at pH 5.5. MPPB@A NPs were demonstrated to effectively disrupt C. albicans biofilms and scavenge reactive oxygen species (ROS). In murine OC models, MPPB@A NPs significantly reduced oral fungal burden (11.17 % of the free AMB group) and alleviated oxidative stress. Subsequently, ROS-mediated inflammation was reduced. Furthermore, MPPB@A NPs exhibited the favorable biocompatibility, including hemolysis rates below 5 %, reduced cytotoxicity, and significantly lower nephrotoxicity compared to free AMB. Therefore, this study provides a promising strategy to overcome AMB toxicity and resistance while promoting the synergistic antifungal-antioxidant therapy for OC management.

Statement of Significance

Current oral candidiasis therapies face challenges of drug resistance and systemic toxicity. This study has the potential to address these limitations using a biomimetic nanoplatform combining macrophage membrane camouflage with a pH-responsive carrier, enabling targeted dual-drug delivery to infection sites. The membrane coating facilitates tissue accumulation, while pH-triggered release delivers amphotericin B within acidic fungal biofilms, disrupting Candida albicans. Baicalein, as a nanocarrier component, exhibits antioxidant and anti-inflammatory effects. This strategy synergistically combats fungal infection and associated oxidative stress damage while significantly enhancing drug biocompatibility and reducing systemic toxicity, offering a clinically translatable solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信