人工智能驱动的Flortaucipir PET定量检测Tau病理。

IF 9.1
Hye Bin Yoo, Seung Kwan Kang, Seong A Shin, Daewoon Kim, Hongyoon Choi, Yu Kyeong Kim, Dahyun Yi, Min Soo Byun, Dong Young Lee, Jae Sung Lee
{"title":"人工智能驱动的Flortaucipir PET定量检测Tau病理。","authors":"Hye Bin Yoo, Seung Kwan Kang, Seong A Shin, Daewoon Kim, Hongyoon Choi, Yu Kyeong Kim, Dahyun Yi, Min Soo Byun, Dong Young Lee, Jae Sung Lee","doi":"10.2967/jnumed.125.269636","DOIUrl":null,"url":null,"abstract":"<p><p>We developed and evaluated an artificial intelligence (AI)-powered approach for easier quantification of tau PET uptake without requiring structural MR to aid earlier tracking of Alzheimer disease (AD). <b>Methods:</b> We implemented a deep neural network model that normalizes <sup>18</sup>F-AV1451 (tau) PET images to a standard template without requiring MR, using transfer learning from a model pretrained on amyloid PET. This model was integrated into an MR-free pipeline for tau PET quantification and validated on external dataset (Alzheimer Disease Neuroimaging Initiative). We examined correlations between model-derived tau uptake estimates and cognitive measures, including AD stage and episodic memory performance (<i>n</i> = 666). Longitudinal analyses were conducted to assess whether baseline tau deposition predicted future cognitive decline (<i>n</i> = 168). <b>Results:</b> The AI-powered pipeline achieved robust performance with intraclass correlation coefficients exceeding 0.97 for regional uptake estimation compared with MR-based ground truth. We also showed that the tau deposition in metatemporal regions was significantly correlated with Mini-Mental State Examination and Montreal Cognitive Assessment scores. Elevated tau PET uptake in the entorhinal cortex and inferior temporal gyrus predicted future cognitive decline. <b>Conclusion:</b> The proposed AI-powered pipeline enhances the clinical accessibility of tau PET by reducing scan costs and streamlining the uptake quantification, achieving high performance without requiring structural MR. We further demonstrated that the pipeline yields cognitively relevant outcome measures for early diagnosis and monitoring of AD progression to aid more personalized treatment strategies targeting AD biomarkers.</p>","PeriodicalId":94099,"journal":{"name":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-Powered Quantification of Flortaucipir PET for Detecting Tau Pathology.\",\"authors\":\"Hye Bin Yoo, Seung Kwan Kang, Seong A Shin, Daewoon Kim, Hongyoon Choi, Yu Kyeong Kim, Dahyun Yi, Min Soo Byun, Dong Young Lee, Jae Sung Lee\",\"doi\":\"10.2967/jnumed.125.269636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We developed and evaluated an artificial intelligence (AI)-powered approach for easier quantification of tau PET uptake without requiring structural MR to aid earlier tracking of Alzheimer disease (AD). <b>Methods:</b> We implemented a deep neural network model that normalizes <sup>18</sup>F-AV1451 (tau) PET images to a standard template without requiring MR, using transfer learning from a model pretrained on amyloid PET. This model was integrated into an MR-free pipeline for tau PET quantification and validated on external dataset (Alzheimer Disease Neuroimaging Initiative). We examined correlations between model-derived tau uptake estimates and cognitive measures, including AD stage and episodic memory performance (<i>n</i> = 666). Longitudinal analyses were conducted to assess whether baseline tau deposition predicted future cognitive decline (<i>n</i> = 168). <b>Results:</b> The AI-powered pipeline achieved robust performance with intraclass correlation coefficients exceeding 0.97 for regional uptake estimation compared with MR-based ground truth. We also showed that the tau deposition in metatemporal regions was significantly correlated with Mini-Mental State Examination and Montreal Cognitive Assessment scores. Elevated tau PET uptake in the entorhinal cortex and inferior temporal gyrus predicted future cognitive decline. <b>Conclusion:</b> The proposed AI-powered pipeline enhances the clinical accessibility of tau PET by reducing scan costs and streamlining the uptake quantification, achieving high performance without requiring structural MR. We further demonstrated that the pipeline yields cognitively relevant outcome measures for early diagnosis and monitoring of AD progression to aid more personalized treatment strategies targeting AD biomarkers.</p>\",\"PeriodicalId\":94099,\"journal\":{\"name\":\"Journal of nuclear medicine : official publication, Society of Nuclear Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nuclear medicine : official publication, Society of Nuclear Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2967/jnumed.125.269636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnumed.125.269636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发并评估了一种人工智能(AI)驱动的方法,该方法可以更容易地量化tau PET摄取,而无需结构性MR来帮助早期跟踪阿尔茨海默病(AD)。方法:我们实现了一个深度神经网络模型,该模型使用淀粉样蛋白PET预训练模型的迁移学习,将18F-AV1451 (tau) PET图像归一化到标准模板,而无需进行MR。该模型被整合到tau PET量化的无mr管道中,并在外部数据集上进行验证(阿尔茨海默病神经成像倡议)。我们研究了模型衍生的tau摄取估计与认知测量之间的相关性,包括AD阶段和情景记忆表现(n = 666)。进行纵向分析以评估基线tau沉积是否预测未来认知能力下降(n = 168)。结果:与基于核磁共振的地面真值相比,人工智能驱动的管道在区域摄取估计方面具有鲁棒性,类内相关系数超过0.97。我们还发现,颞叶区域的tau沉积与迷你精神状态检查和蒙特利尔认知评估得分显著相关。内嗅皮层和颞下回的tau PET摄取升高预示着未来的认知能力下降。结论:提出的人工智能驱动的管道通过降低扫描成本和简化摄取量化来提高tau PET的临床可及性,在不需要结构性mr的情况下实现高性能。我们进一步证明,该管道为早期诊断和监测AD进展提供了认知相关的结果测量,有助于针对AD生物标志物制定更个性化的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence-Powered Quantification of Flortaucipir PET for Detecting Tau Pathology.

We developed and evaluated an artificial intelligence (AI)-powered approach for easier quantification of tau PET uptake without requiring structural MR to aid earlier tracking of Alzheimer disease (AD). Methods: We implemented a deep neural network model that normalizes 18F-AV1451 (tau) PET images to a standard template without requiring MR, using transfer learning from a model pretrained on amyloid PET. This model was integrated into an MR-free pipeline for tau PET quantification and validated on external dataset (Alzheimer Disease Neuroimaging Initiative). We examined correlations between model-derived tau uptake estimates and cognitive measures, including AD stage and episodic memory performance (n = 666). Longitudinal analyses were conducted to assess whether baseline tau deposition predicted future cognitive decline (n = 168). Results: The AI-powered pipeline achieved robust performance with intraclass correlation coefficients exceeding 0.97 for regional uptake estimation compared with MR-based ground truth. We also showed that the tau deposition in metatemporal regions was significantly correlated with Mini-Mental State Examination and Montreal Cognitive Assessment scores. Elevated tau PET uptake in the entorhinal cortex and inferior temporal gyrus predicted future cognitive decline. Conclusion: The proposed AI-powered pipeline enhances the clinical accessibility of tau PET by reducing scan costs and streamlining the uptake quantification, achieving high performance without requiring structural MR. We further demonstrated that the pipeline yields cognitively relevant outcome measures for early diagnosis and monitoring of AD progression to aid more personalized treatment strategies targeting AD biomarkers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信