Edgardo Villar-Sepúlveda, Alan R Champneys, Andrew L Krause
{"title":"设计具有图灵和波动不稳定性的反应-交叉扩散系统。","authors":"Edgardo Villar-Sepúlveda, Alan R Champneys, Andrew L Krause","doi":"10.1007/s00285-025-02274-1","DOIUrl":null,"url":null,"abstract":"<p><p>General conditions are established under which reaction-cross-diffusion systems can undergo spatiotemporal pattern-forming instabilities. Recent work has focused on designing systems theoretically and experimentally to exhibit patterns with specific features, but the case of non-diagonal diffusion matrices has yet to be analysed. Here, a framework is presented for the design of general n-component reaction-cross-diffusion systems that exhibit Turing and wave instabilities of a given wavelength. For a fixed set of reaction kinetics, it is shown how to choose diffusion matrices that produce each instability; conversely, for a given diffusion tensor, how to choose linearised kinetics. The theory is applied to several examples including a hyperbolic reaction-diffusion system, two different 3-component models, and a spatio-temporal version of the Ross-Macdonald model for the spread of malaria.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 4","pages":"37"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426155/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing reaction-cross-diffusion systems with Turing and wave instabilities.\",\"authors\":\"Edgardo Villar-Sepúlveda, Alan R Champneys, Andrew L Krause\",\"doi\":\"10.1007/s00285-025-02274-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>General conditions are established under which reaction-cross-diffusion systems can undergo spatiotemporal pattern-forming instabilities. Recent work has focused on designing systems theoretically and experimentally to exhibit patterns with specific features, but the case of non-diagonal diffusion matrices has yet to be analysed. Here, a framework is presented for the design of general n-component reaction-cross-diffusion systems that exhibit Turing and wave instabilities of a given wavelength. For a fixed set of reaction kinetics, it is shown how to choose diffusion matrices that produce each instability; conversely, for a given diffusion tensor, how to choose linearised kinetics. The theory is applied to several examples including a hyperbolic reaction-diffusion system, two different 3-component models, and a spatio-temporal version of the Ross-Macdonald model for the spread of malaria.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 4\",\"pages\":\"37\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02274-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02274-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Designing reaction-cross-diffusion systems with Turing and wave instabilities.
General conditions are established under which reaction-cross-diffusion systems can undergo spatiotemporal pattern-forming instabilities. Recent work has focused on designing systems theoretically and experimentally to exhibit patterns with specific features, but the case of non-diagonal diffusion matrices has yet to be analysed. Here, a framework is presented for the design of general n-component reaction-cross-diffusion systems that exhibit Turing and wave instabilities of a given wavelength. For a fixed set of reaction kinetics, it is shown how to choose diffusion matrices that produce each instability; conversely, for a given diffusion tensor, how to choose linearised kinetics. The theory is applied to several examples including a hyperbolic reaction-diffusion system, two different 3-component models, and a spatio-temporal version of the Ross-Macdonald model for the spread of malaria.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.