{"title":"[氧化还原稳态调控非小细胞肺癌第三代EGFR-TKIs耐药\u2029的研究进展]。","authors":"Ting Luo, Chen Fang, Feng Qiu","doi":"10.3779/j.issn.1009-3419.2025.106.21","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) ranks among the most lethal malignancies worldwide. The clinical application of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have successfully revolutionized the treatment paradigm for EGFR-mutant NSCLC, significantly prolonging progression-free survival and establishing EGFR-TKIs as the standard first-line therapy for advanced lung adenocarcinoma. However, acquired resistance remains a major obstacle to sustained clinical benefit, with mechanisms that are highly heterogeneous. A phenomenon of \"oxidative stress compensation\" is commonly observed in EGFR-TKIs-resistant cells, where in redox homeostasis, through the precise regulation of reactive oxygen species (ROS) generation and elimination, plays a pivotal role in maintaining the balance between tumor cell proliferation and apoptosis. This review aims to innovatively construct a theoretical framework describing how dynamic redox regulation influences resistance to third-generation EGFR-TKIs. It focuses on the multifaceted roles of ROS in both EGFR-dependent and EGFR-independent resistance mechanisms, and further explores therapeutic strategies that target ROS kinetic thresholds and antioxidant systems. These insights not only propose an innovative \"metabolic checkpoint\" regulatory pathway to overcome acquired resistance to third-generation EGFR-TKIs, but also lay a molecular foundation for developing the redox biomarker-based dynamic therapeutic decision-making systems, thereby facilitating a shift in NSCLC therapy from single-target inhibition toward multi-dimensional metabolic remodeling in the context of precision medicine.\u2029.</p>","PeriodicalId":39317,"journal":{"name":"中国肺癌杂志","volume":"28 7","pages":"521-532"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12438653/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Research Progress on the Regulation of Third-generation EGFR-TKIs Resistance \\u2029in Non-small Cell Lung Cancer by Redox Homeostasis].\",\"authors\":\"Ting Luo, Chen Fang, Feng Qiu\",\"doi\":\"10.3779/j.issn.1009-3419.2025.106.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-small cell lung cancer (NSCLC) ranks among the most lethal malignancies worldwide. The clinical application of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have successfully revolutionized the treatment paradigm for EGFR-mutant NSCLC, significantly prolonging progression-free survival and establishing EGFR-TKIs as the standard first-line therapy for advanced lung adenocarcinoma. However, acquired resistance remains a major obstacle to sustained clinical benefit, with mechanisms that are highly heterogeneous. A phenomenon of \\\"oxidative stress compensation\\\" is commonly observed in EGFR-TKIs-resistant cells, where in redox homeostasis, through the precise regulation of reactive oxygen species (ROS) generation and elimination, plays a pivotal role in maintaining the balance between tumor cell proliferation and apoptosis. This review aims to innovatively construct a theoretical framework describing how dynamic redox regulation influences resistance to third-generation EGFR-TKIs. It focuses on the multifaceted roles of ROS in both EGFR-dependent and EGFR-independent resistance mechanisms, and further explores therapeutic strategies that target ROS kinetic thresholds and antioxidant systems. These insights not only propose an innovative \\\"metabolic checkpoint\\\" regulatory pathway to overcome acquired resistance to third-generation EGFR-TKIs, but also lay a molecular foundation for developing the redox biomarker-based dynamic therapeutic decision-making systems, thereby facilitating a shift in NSCLC therapy from single-target inhibition toward multi-dimensional metabolic remodeling in the context of precision medicine.\\u2029.</p>\",\"PeriodicalId\":39317,\"journal\":{\"name\":\"中国肺癌杂志\",\"volume\":\"28 7\",\"pages\":\"521-532\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12438653/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国肺癌杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3779/j.issn.1009-3419.2025.106.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国肺癌杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3779/j.issn.1009-3419.2025.106.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
[Research Progress on the Regulation of Third-generation EGFR-TKIs Resistance in Non-small Cell Lung Cancer by Redox Homeostasis].
Non-small cell lung cancer (NSCLC) ranks among the most lethal malignancies worldwide. The clinical application of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have successfully revolutionized the treatment paradigm for EGFR-mutant NSCLC, significantly prolonging progression-free survival and establishing EGFR-TKIs as the standard first-line therapy for advanced lung adenocarcinoma. However, acquired resistance remains a major obstacle to sustained clinical benefit, with mechanisms that are highly heterogeneous. A phenomenon of "oxidative stress compensation" is commonly observed in EGFR-TKIs-resistant cells, where in redox homeostasis, through the precise regulation of reactive oxygen species (ROS) generation and elimination, plays a pivotal role in maintaining the balance between tumor cell proliferation and apoptosis. This review aims to innovatively construct a theoretical framework describing how dynamic redox regulation influences resistance to third-generation EGFR-TKIs. It focuses on the multifaceted roles of ROS in both EGFR-dependent and EGFR-independent resistance mechanisms, and further explores therapeutic strategies that target ROS kinetic thresholds and antioxidant systems. These insights not only propose an innovative "metabolic checkpoint" regulatory pathway to overcome acquired resistance to third-generation EGFR-TKIs, but also lay a molecular foundation for developing the redox biomarker-based dynamic therapeutic decision-making systems, thereby facilitating a shift in NSCLC therapy from single-target inhibition toward multi-dimensional metabolic remodeling in the context of precision medicine. .
期刊介绍:
Chinese Journal of Lung Cancer(CJLC, pISSN 1009-3419, eISSN 1999-6187), a monthly Open Access journal, is hosted by Chinese Anti-Cancer Association, Chinese Antituberculosis Association, Tianjin Medical University General Hospital. CJLC was indexed in DOAJ, EMBASE/SCOPUS, Chemical Abstract(CA), CSA-Biological Science, HINARI, EBSCO-CINAHL,CABI Abstract, Global Health, CNKI, etc. Editor-in-Chief: Professor Qinghua ZHOU.