随机扩散使用平均场极限来近似主方程。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-09-10 eCollection Date: 2025-09-01 DOI:10.1098/rsos.250726
Laurent Hébert-Dufresne, Matthew M Kling, Samuel F Rosenblatt, Stephanie N Miller, P Alexander Burnham, Nicholas W Landry, Nicholas J Gotelli, Brian J McGill
{"title":"随机扩散使用平均场极限来近似主方程。","authors":"Laurent Hébert-Dufresne, Matthew M Kling, Samuel F Rosenblatt, Stephanie N Miller, P Alexander Burnham, Nicholas W Landry, Nicholas J Gotelli, Brian J McGill","doi":"10.1098/rsos.250726","DOIUrl":null,"url":null,"abstract":"<p><p>Stochastic diffusion is the noisy process through which dynamics like epidemics, or agents like animal species, disperse over a larger area. These processes are increasingly important to better prepare for pandemics and as species ranges shift in response to climate change. Unfortunately, modelling is mostly done with expensive computational simulations or inaccurate deterministic tools that ignore the randomness of dispersal. We introduce 'mean-FLAME' models, tracking stochastic dispersion using approximate master equations to follow the probability distribution over all possible states of an area of interest, up to states active enough to be approximated using a mean-field model. In the limit where we track all states, this approach is locally exact, and in the other limit collapses to traditional deterministic models. In predator-prey systems, we show that tracking a handful of states around key absorbing states is sufficient to accurately model extinction. In disease models, we show that classic mean-field approaches underestimate the heterogeneity of epidemics. And in nonlinear dispersal models, we show that deterministic tools fail to capture the speed of spatial diffusion. These effects are all important for marginal areas that are close to unsuitable for diffusion, like the edge of a species range or epidemics in small populations.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 9","pages":"250726"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419881/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stochastic diffusion using mean-field limits to approximate master equations.\",\"authors\":\"Laurent Hébert-Dufresne, Matthew M Kling, Samuel F Rosenblatt, Stephanie N Miller, P Alexander Burnham, Nicholas W Landry, Nicholas J Gotelli, Brian J McGill\",\"doi\":\"10.1098/rsos.250726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stochastic diffusion is the noisy process through which dynamics like epidemics, or agents like animal species, disperse over a larger area. These processes are increasingly important to better prepare for pandemics and as species ranges shift in response to climate change. Unfortunately, modelling is mostly done with expensive computational simulations or inaccurate deterministic tools that ignore the randomness of dispersal. We introduce 'mean-FLAME' models, tracking stochastic dispersion using approximate master equations to follow the probability distribution over all possible states of an area of interest, up to states active enough to be approximated using a mean-field model. In the limit where we track all states, this approach is locally exact, and in the other limit collapses to traditional deterministic models. In predator-prey systems, we show that tracking a handful of states around key absorbing states is sufficient to accurately model extinction. In disease models, we show that classic mean-field approaches underestimate the heterogeneity of epidemics. And in nonlinear dispersal models, we show that deterministic tools fail to capture the speed of spatial diffusion. These effects are all important for marginal areas that are close to unsuitable for diffusion, like the edge of a species range or epidemics in small populations.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"12 9\",\"pages\":\"250726\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419881/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.250726\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.250726","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随机扩散是一个嘈杂的过程,通过这个过程,像流行病这样的动力学,或者像动物物种这样的病原体,会在一个更大的区域内扩散。随着物种范围因气候变化而发生变化,这些过程对于更好地应对大流行病和物种范围的变化变得越来越重要。不幸的是,建模大多是通过昂贵的计算模拟或不准确的确定性工具完成的,这些工具忽略了分散的随机性。我们引入了“mean-FLAME”模型,使用近似主方程跟踪随机色散,以跟踪感兴趣区域所有可能状态的概率分布,直到使用平均场模型近似的活跃状态。在我们跟踪所有状态的极限下,这种方法是局部精确的,而在另一个极限下,这种方法崩溃为传统的确定性模型。在捕食者-猎物系统中,我们表明跟踪关键吸收状态周围的少数状态足以准确地模拟灭绝。在疾病模型中,我们表明经典的平均场方法低估了流行病的异质性。在非线性扩散模型中,我们发现确定性工具无法捕捉到空间扩散的速度。这些影响对于几乎不适合传播的边缘地区都很重要,比如物种范围的边缘或小群体中的流行病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic diffusion using mean-field limits to approximate master equations.

Stochastic diffusion is the noisy process through which dynamics like epidemics, or agents like animal species, disperse over a larger area. These processes are increasingly important to better prepare for pandemics and as species ranges shift in response to climate change. Unfortunately, modelling is mostly done with expensive computational simulations or inaccurate deterministic tools that ignore the randomness of dispersal. We introduce 'mean-FLAME' models, tracking stochastic dispersion using approximate master equations to follow the probability distribution over all possible states of an area of interest, up to states active enough to be approximated using a mean-field model. In the limit where we track all states, this approach is locally exact, and in the other limit collapses to traditional deterministic models. In predator-prey systems, we show that tracking a handful of states around key absorbing states is sufficient to accurately model extinction. In disease models, we show that classic mean-field approaches underestimate the heterogeneity of epidemics. And in nonlinear dispersal models, we show that deterministic tools fail to capture the speed of spatial diffusion. These effects are all important for marginal areas that are close to unsuitable for diffusion, like the edge of a species range or epidemics in small populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信