{"title":"用混合自旋漂移-扩散增强角通道石墨烯自旋阀的自旋输运特性。","authors":"Samuel Olson, Kaleb Hood, Otto Zietz, Jun Jiao","doi":"10.3390/nano15171367","DOIUrl":null,"url":null,"abstract":"<p><p>Graphene has promise as a channel connecting separate units of large-scale spintronic circuits owing to its outstanding theoretical spin transport properties. However, spin transport properties of experimental devices consistently fall short of theoretical estimates due to impacts from the substrate, electrodes, or defects in the graphene itself. In this study, we fabricate both traditional non-local spin valves (NLSVs) and novel hybrid drift-diffusion spin valves (HDDSVs) to explore the impact of charge current and AC spin injection efficiency on spin transport. HDDSVs feature channel branches that allow investigation of charge-based spin drift enhancement compared to diffusion-only configurations. We investigate the modulation of spin transport through hybrid drift-diffusion, observing a decrease in spin signal by 11% for channels with a 45° branch angle, and a 21% increase in spin signal for 135° branch angle channels. We then fabricate symmetrical 90° channel branch angle devices, which do not produce consistent spin transport modulation in drift diffusion mode. These findings highlight the role of carrier drift in enhancing or suppressing spin transport, depending on channel geometry and injection configuration. Overall, our work demonstrates a promising approach to optimizing spin transport in graphene devices by leveraging hybrid drift-diffusion effects without requiring additional DC current sources.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 17","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12429978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Spin Transport Properties in Angled-Channel Graphene Spin Valves via Hybrid Spin Drift-Diffusion.\",\"authors\":\"Samuel Olson, Kaleb Hood, Otto Zietz, Jun Jiao\",\"doi\":\"10.3390/nano15171367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Graphene has promise as a channel connecting separate units of large-scale spintronic circuits owing to its outstanding theoretical spin transport properties. However, spin transport properties of experimental devices consistently fall short of theoretical estimates due to impacts from the substrate, electrodes, or defects in the graphene itself. In this study, we fabricate both traditional non-local spin valves (NLSVs) and novel hybrid drift-diffusion spin valves (HDDSVs) to explore the impact of charge current and AC spin injection efficiency on spin transport. HDDSVs feature channel branches that allow investigation of charge-based spin drift enhancement compared to diffusion-only configurations. We investigate the modulation of spin transport through hybrid drift-diffusion, observing a decrease in spin signal by 11% for channels with a 45° branch angle, and a 21% increase in spin signal for 135° branch angle channels. We then fabricate symmetrical 90° channel branch angle devices, which do not produce consistent spin transport modulation in drift diffusion mode. These findings highlight the role of carrier drift in enhancing or suppressing spin transport, depending on channel geometry and injection configuration. Overall, our work demonstrates a promising approach to optimizing spin transport in graphene devices by leveraging hybrid drift-diffusion effects without requiring additional DC current sources.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 17\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12429978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15171367\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15171367","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancement of Spin Transport Properties in Angled-Channel Graphene Spin Valves via Hybrid Spin Drift-Diffusion.
Graphene has promise as a channel connecting separate units of large-scale spintronic circuits owing to its outstanding theoretical spin transport properties. However, spin transport properties of experimental devices consistently fall short of theoretical estimates due to impacts from the substrate, electrodes, or defects in the graphene itself. In this study, we fabricate both traditional non-local spin valves (NLSVs) and novel hybrid drift-diffusion spin valves (HDDSVs) to explore the impact of charge current and AC spin injection efficiency on spin transport. HDDSVs feature channel branches that allow investigation of charge-based spin drift enhancement compared to diffusion-only configurations. We investigate the modulation of spin transport through hybrid drift-diffusion, observing a decrease in spin signal by 11% for channels with a 45° branch angle, and a 21% increase in spin signal for 135° branch angle channels. We then fabricate symmetrical 90° channel branch angle devices, which do not produce consistent spin transport modulation in drift diffusion mode. These findings highlight the role of carrier drift in enhancing or suppressing spin transport, depending on channel geometry and injection configuration. Overall, our work demonstrates a promising approach to optimizing spin transport in graphene devices by leveraging hybrid drift-diffusion effects without requiring additional DC current sources.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.