Marina Manica, Mirela Petruta Suchea, Dumitru Manica, Petronela Pascariu, Oana Brincoveanu, Cosmin Romanitan, Cristina Pachiu, Adrian Dinescu, Raluca Muller, Stefan Antohe, Daniel Marcel Manoli, Emmanuel Koudoumas
{"title":"电纺丝-煅烧纳米微团簇制备re掺杂ZnO薄膜的形貌和光学性质。","authors":"Marina Manica, Mirela Petruta Suchea, Dumitru Manica, Petronela Pascariu, Oana Brincoveanu, Cosmin Romanitan, Cristina Pachiu, Adrian Dinescu, Raluca Muller, Stefan Antohe, Daniel Marcel Manoli, Emmanuel Koudoumas","doi":"10.3390/nano15171369","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1-5 at.%) into ZnO, and the resulting powders were drop-cast as thin films on glass substrates. This approach enables the transfer of pre-engineered nanoscale morphologies into the final thin-film architecture. The morphological analysis by scanning electron microscopy (SEM) revealed a predominance of spherical nanoparticles and nanorods, with distinct variations in size and aspect ratio depending on dopant type and concentration. X-ray diffraction (XRD) and Rietveld analysis confirmed the wurtzite ZnO structure with increasing evidence of secondary phase formation at high dopant levels (e.g., Er<sub>2</sub>O<sub>3</sub>, Sm<sub>2</sub>O<sub>3</sub>, and La(OH)<sub>3</sub>). Raman spectroscopy showed peak shifts, broadening, and defect-related vibrational modes induced by RE incorporation, in agreement with the lattice strain and crystallinity variations observed in XRD. Elemental mapping (EDX) confirmed uniform dopant distribution. Optical transmittance exceeded 70% for all films, with Tauc analysis revealing slight bandgap narrowing (Eg = 2.93-2.97 eV) compared to pure ZnO. This study demonstrates that rare-earth doping via electrospun nanocluster precursors is a viable route to engineer ZnO thin films with tunable structural and optical properties. Despite current limitations in film-substrate adhesion, the method offers a promising pathway for future transparent optoelectronic, sensing, or UV detection applications, where further interface engineering could unlock their full potential.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 17","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12430296/pdf/","citationCount":"0","resultStr":"{\"title\":\"Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning-Calcination.\",\"authors\":\"Marina Manica, Mirela Petruta Suchea, Dumitru Manica, Petronela Pascariu, Oana Brincoveanu, Cosmin Romanitan, Cristina Pachiu, Adrian Dinescu, Raluca Muller, Stefan Antohe, Daniel Marcel Manoli, Emmanuel Koudoumas\",\"doi\":\"10.3390/nano15171369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1-5 at.%) into ZnO, and the resulting powders were drop-cast as thin films on glass substrates. This approach enables the transfer of pre-engineered nanoscale morphologies into the final thin-film architecture. The morphological analysis by scanning electron microscopy (SEM) revealed a predominance of spherical nanoparticles and nanorods, with distinct variations in size and aspect ratio depending on dopant type and concentration. X-ray diffraction (XRD) and Rietveld analysis confirmed the wurtzite ZnO structure with increasing evidence of secondary phase formation at high dopant levels (e.g., Er<sub>2</sub>O<sub>3</sub>, Sm<sub>2</sub>O<sub>3</sub>, and La(OH)<sub>3</sub>). Raman spectroscopy showed peak shifts, broadening, and defect-related vibrational modes induced by RE incorporation, in agreement with the lattice strain and crystallinity variations observed in XRD. Elemental mapping (EDX) confirmed uniform dopant distribution. Optical transmittance exceeded 70% for all films, with Tauc analysis revealing slight bandgap narrowing (Eg = 2.93-2.97 eV) compared to pure ZnO. This study demonstrates that rare-earth doping via electrospun nanocluster precursors is a viable route to engineer ZnO thin films with tunable structural and optical properties. Despite current limitations in film-substrate adhesion, the method offers a promising pathway for future transparent optoelectronic, sensing, or UV detection applications, where further interface engineering could unlock their full potential.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 17\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12430296/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15171369\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15171369","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning-Calcination.
In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1-5 at.%) into ZnO, and the resulting powders were drop-cast as thin films on glass substrates. This approach enables the transfer of pre-engineered nanoscale morphologies into the final thin-film architecture. The morphological analysis by scanning electron microscopy (SEM) revealed a predominance of spherical nanoparticles and nanorods, with distinct variations in size and aspect ratio depending on dopant type and concentration. X-ray diffraction (XRD) and Rietveld analysis confirmed the wurtzite ZnO structure with increasing evidence of secondary phase formation at high dopant levels (e.g., Er2O3, Sm2O3, and La(OH)3). Raman spectroscopy showed peak shifts, broadening, and defect-related vibrational modes induced by RE incorporation, in agreement with the lattice strain and crystallinity variations observed in XRD. Elemental mapping (EDX) confirmed uniform dopant distribution. Optical transmittance exceeded 70% for all films, with Tauc analysis revealing slight bandgap narrowing (Eg = 2.93-2.97 eV) compared to pure ZnO. This study demonstrates that rare-earth doping via electrospun nanocluster precursors is a viable route to engineer ZnO thin films with tunable structural and optical properties. Despite current limitations in film-substrate adhesion, the method offers a promising pathway for future transparent optoelectronic, sensing, or UV detection applications, where further interface engineering could unlock their full potential.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.