Sunmi Han , Assel Seitkazina , Jeongyun Heo , Se-young Kim , SuJin Kim , Sung-Ho Jeon , Yung Hun Park , Taehun Lim , Bohyeon Kim , Shivani Rajoriya , Quy Son Luu , Youngbok Lee , Yong-Deok Lee , Honghwan Choi , Won-Keun Kim , Hyun Jik Kim , Sehoon Kim
{"title":"鼻内纳米光敏剂可实现安全、广谱的呼吸道病毒光动力灭活。","authors":"Sunmi Han , Assel Seitkazina , Jeongyun Heo , Se-young Kim , SuJin Kim , Sung-Ho Jeon , Yung Hun Park , Taehun Lim , Bohyeon Kim , Shivani Rajoriya , Quy Son Luu , Youngbok Lee , Yong-Deok Lee , Honghwan Choi , Won-Keun Kim , Hyun Jik Kim , Sehoon Kim","doi":"10.1016/j.jphotobiol.2025.113261","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of highly transmissible respiratory viruses, including SARS-CoV-2 and its variants, emphasizes the urgent need for safe, variant-agnostic, and self-administered antiviral strategies. Here, we present a nanotheranostic platform (MBSD) based on methylene blue nanoparticles stabilized with a primary fatty acid naturally found in human nasal mucosa, designed for intranasal photodynamic inactivation (PDI). This nanoformulation enhances cellular permeability and singlet oxygen generation at sites of viral infection through strategic ion pairing and micellization using clinically approved excipients. MBSD demonstrated superior uptake and intracellular singlet oxygen generation in human nasal epithelial cells compared to free methylene blue. Upon exposure to red light, PDI treatment with MBSD significantly reduced viral gene expression and infectivity across multiple RNA and DNA viruses—including influenza A, SARS-CoV-2 variants (B.1 and Delta), Zika, Vaccinia, and emerging paramyxoviruses—with sub-nanomolar to low-nanomolar EC₅₀ values. In murine models, a single intranasal MBSD-mediated PDI treatment attenuated disease progression, markedly reduced lung viral burden and inflammation, and improved survival outcomes. In addition, repeated PDI treatments showed no detectable toxicity to normal mucosal tissues, indicating a favorable safety profile. These findings highlight MBSD-mediated PDI as a clinically translatable, non-invasive nanomedicine strategy that offers broad-spectrum antiviral efficacy and mucosal safety, supporting its potential as a frontline theranostic intervention for early-stage management of respiratory virus outbreaks.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"272 ","pages":"Article 113261"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intranasal nanophotosensitizer enables safe and broad-spectrum photodynamic inactivation of respiratory viruses\",\"authors\":\"Sunmi Han , Assel Seitkazina , Jeongyun Heo , Se-young Kim , SuJin Kim , Sung-Ho Jeon , Yung Hun Park , Taehun Lim , Bohyeon Kim , Shivani Rajoriya , Quy Son Luu , Youngbok Lee , Yong-Deok Lee , Honghwan Choi , Won-Keun Kim , Hyun Jik Kim , Sehoon Kim\",\"doi\":\"10.1016/j.jphotobiol.2025.113261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The emergence of highly transmissible respiratory viruses, including SARS-CoV-2 and its variants, emphasizes the urgent need for safe, variant-agnostic, and self-administered antiviral strategies. Here, we present a nanotheranostic platform (MBSD) based on methylene blue nanoparticles stabilized with a primary fatty acid naturally found in human nasal mucosa, designed for intranasal photodynamic inactivation (PDI). This nanoformulation enhances cellular permeability and singlet oxygen generation at sites of viral infection through strategic ion pairing and micellization using clinically approved excipients. MBSD demonstrated superior uptake and intracellular singlet oxygen generation in human nasal epithelial cells compared to free methylene blue. Upon exposure to red light, PDI treatment with MBSD significantly reduced viral gene expression and infectivity across multiple RNA and DNA viruses—including influenza A, SARS-CoV-2 variants (B.1 and Delta), Zika, Vaccinia, and emerging paramyxoviruses—with sub-nanomolar to low-nanomolar EC₅₀ values. In murine models, a single intranasal MBSD-mediated PDI treatment attenuated disease progression, markedly reduced lung viral burden and inflammation, and improved survival outcomes. In addition, repeated PDI treatments showed no detectable toxicity to normal mucosal tissues, indicating a favorable safety profile. These findings highlight MBSD-mediated PDI as a clinically translatable, non-invasive nanomedicine strategy that offers broad-spectrum antiviral efficacy and mucosal safety, supporting its potential as a frontline theranostic intervention for early-stage management of respiratory virus outbreaks.</div></div>\",\"PeriodicalId\":16772,\"journal\":{\"name\":\"Journal of photochemistry and photobiology. B, Biology\",\"volume\":\"272 \",\"pages\":\"Article 113261\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of photochemistry and photobiology. B, Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1011134425001642\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134425001642","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Intranasal nanophotosensitizer enables safe and broad-spectrum photodynamic inactivation of respiratory viruses
The emergence of highly transmissible respiratory viruses, including SARS-CoV-2 and its variants, emphasizes the urgent need for safe, variant-agnostic, and self-administered antiviral strategies. Here, we present a nanotheranostic platform (MBSD) based on methylene blue nanoparticles stabilized with a primary fatty acid naturally found in human nasal mucosa, designed for intranasal photodynamic inactivation (PDI). This nanoformulation enhances cellular permeability and singlet oxygen generation at sites of viral infection through strategic ion pairing and micellization using clinically approved excipients. MBSD demonstrated superior uptake and intracellular singlet oxygen generation in human nasal epithelial cells compared to free methylene blue. Upon exposure to red light, PDI treatment with MBSD significantly reduced viral gene expression and infectivity across multiple RNA and DNA viruses—including influenza A, SARS-CoV-2 variants (B.1 and Delta), Zika, Vaccinia, and emerging paramyxoviruses—with sub-nanomolar to low-nanomolar EC₅₀ values. In murine models, a single intranasal MBSD-mediated PDI treatment attenuated disease progression, markedly reduced lung viral burden and inflammation, and improved survival outcomes. In addition, repeated PDI treatments showed no detectable toxicity to normal mucosal tissues, indicating a favorable safety profile. These findings highlight MBSD-mediated PDI as a clinically translatable, non-invasive nanomedicine strategy that offers broad-spectrum antiviral efficacy and mucosal safety, supporting its potential as a frontline theranostic intervention for early-stage management of respiratory virus outbreaks.
期刊介绍:
The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field.
The scope includes:
- Bioluminescence
- Chronobiology
- DNA repair
- Environmental photobiology
- Nanotechnology in photobiology
- Photocarcinogenesis
- Photochemistry of biomolecules
- Photodynamic therapy
- Photomedicine
- Photomorphogenesis
- Photomovement
- Photoreception
- Photosensitization
- Photosynthesis
- Phototechnology
- Spectroscopy of biological systems
- UV and visible radiation effects and vision.