Heba Hellany, Adnan Badran, Ghosoon Albahri, Nadine Kafrouny, Riham El Kurdi, Marc Maresca, Digambara Patra, Elias Baydoun
{"title":"利用巴勒斯坦疥螨提取物生物合成纳米金:表征、抗癌和抗氧化活性。","authors":"Heba Hellany, Adnan Badran, Ghosoon Albahri, Nadine Kafrouny, Riham El Kurdi, Marc Maresca, Digambara Patra, Elias Baydoun","doi":"10.3390/nano15171368","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of <i>Scabiosa palaestina</i>, characterize their physicochemical properties, and evaluate their anticancer properties and antioxidant potential. AuNPs were successfully synthesized and characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), zeta potential analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The results indicated that the biosynthesized AuNPs were spherical and well-dispersed, exhibiting an absorption peak at 560 nm and an average size of 9.9 nm. Cytotoxicity assays demonstrated dose- and time-dependent inhibitory effects on MDA-MB-231, Capan-2, HCT116, and 22Rv1 cancer cell lines, with 22Rv1 and MDA-MB-231 cells showing the most potent responses. At the highest concentration tested (100 µg/mL), after 72 h, cell viability was reduced to 16.04 ± 1.8% for 22Rv1 and 17.48 ± 8.3% for MDA-MB-231 cells. Additionally, the AuNPs exhibited concentration-dependent antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) scavenging assays. In summary, the synthesized AuNPs demonstrated multifunctional properties that make them suitable for a wide range of biomedical and biotechnological applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 17","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12430631/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biogenic Synthesis of Gold Nanoparticles Using <i>Scabiosa palaestina</i> Extract: Characterization, Anticancer and Antioxidant Activities.\",\"authors\":\"Heba Hellany, Adnan Badran, Ghosoon Albahri, Nadine Kafrouny, Riham El Kurdi, Marc Maresca, Digambara Patra, Elias Baydoun\",\"doi\":\"10.3390/nano15171368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of <i>Scabiosa palaestina</i>, characterize their physicochemical properties, and evaluate their anticancer properties and antioxidant potential. AuNPs were successfully synthesized and characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), zeta potential analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The results indicated that the biosynthesized AuNPs were spherical and well-dispersed, exhibiting an absorption peak at 560 nm and an average size of 9.9 nm. Cytotoxicity assays demonstrated dose- and time-dependent inhibitory effects on MDA-MB-231, Capan-2, HCT116, and 22Rv1 cancer cell lines, with 22Rv1 and MDA-MB-231 cells showing the most potent responses. At the highest concentration tested (100 µg/mL), after 72 h, cell viability was reduced to 16.04 ± 1.8% for 22Rv1 and 17.48 ± 8.3% for MDA-MB-231 cells. Additionally, the AuNPs exhibited concentration-dependent antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) scavenging assays. In summary, the synthesized AuNPs demonstrated multifunctional properties that make them suitable for a wide range of biomedical and biotechnological applications.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 17\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12430631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15171368\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15171368","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biogenic Synthesis of Gold Nanoparticles Using Scabiosa palaestina Extract: Characterization, Anticancer and Antioxidant Activities.
Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of Scabiosa palaestina, characterize their physicochemical properties, and evaluate their anticancer properties and antioxidant potential. AuNPs were successfully synthesized and characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), zeta potential analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The results indicated that the biosynthesized AuNPs were spherical and well-dispersed, exhibiting an absorption peak at 560 nm and an average size of 9.9 nm. Cytotoxicity assays demonstrated dose- and time-dependent inhibitory effects on MDA-MB-231, Capan-2, HCT116, and 22Rv1 cancer cell lines, with 22Rv1 and MDA-MB-231 cells showing the most potent responses. At the highest concentration tested (100 µg/mL), after 72 h, cell viability was reduced to 16.04 ± 1.8% for 22Rv1 and 17.48 ± 8.3% for MDA-MB-231 cells. Additionally, the AuNPs exhibited concentration-dependent antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) scavenging assays. In summary, the synthesized AuNPs demonstrated multifunctional properties that make them suitable for a wide range of biomedical and biotechnological applications.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.