{"title":"猕猴腹外侧前额叶皮层同侧和半球间连接的集群结构。","authors":"Danling Hu, Hangqi Li, Toru Takahata, Hisashi Tanigawa","doi":"10.3389/fncir.2025.1635105","DOIUrl":null,"url":null,"abstract":"<p><p>The fine-scale organization of intrinsic and extrinsic connections in the primate ventrolateral prefrontal cortex (VLPFC), a region essential for higher cognitive functions, remains poorly understood. This contrasts with, for example, the well-documented stripe-like intrinsic circuits of the dorsolateral prefrontal cortex (DLPFC). To elucidate the circuit architecture supporting VLPFC function, we investigated the spatial organization of connections targeting the caudal VLPFC (primarily area 45A) in macaque monkeys using multiple retrograde tracers. Analyzing the distribution of labeled neurons in flattened tangential sections revealed that laterally projecting connections within the same hemisphere formed distinct clusters, not only in the VLPFC but also in the DLPFC. These clusters often spanned multiple cortical layers, suggesting a columnar-like organization. The width (minor axis) of these clusters was approximately 1.2 mm. Similarly, contralateral callosal projection neurons were also arranged in clusters. Additionally, inputs originating from the superior temporal sulcus were found to arise from discrete clusters of neurons. Our findings demonstrate that both long-range ipsilateral and interhemispheric connections of the caudal VLPFC share a common, fine-scale clustered architecture. This study provides an anatomical framework for understanding the structural basis of information processing and interhemispheric coordination within this critical association cortex, suggesting that this architecture is fundamental to VLPFC's role in complex cognitive functions.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"19 ","pages":"1635105"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12417498/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clustered architecture of ipsilateral and interhemispheric connections in macaque ventrolateral prefrontal cortex.\",\"authors\":\"Danling Hu, Hangqi Li, Toru Takahata, Hisashi Tanigawa\",\"doi\":\"10.3389/fncir.2025.1635105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fine-scale organization of intrinsic and extrinsic connections in the primate ventrolateral prefrontal cortex (VLPFC), a region essential for higher cognitive functions, remains poorly understood. This contrasts with, for example, the well-documented stripe-like intrinsic circuits of the dorsolateral prefrontal cortex (DLPFC). To elucidate the circuit architecture supporting VLPFC function, we investigated the spatial organization of connections targeting the caudal VLPFC (primarily area 45A) in macaque monkeys using multiple retrograde tracers. Analyzing the distribution of labeled neurons in flattened tangential sections revealed that laterally projecting connections within the same hemisphere formed distinct clusters, not only in the VLPFC but also in the DLPFC. These clusters often spanned multiple cortical layers, suggesting a columnar-like organization. The width (minor axis) of these clusters was approximately 1.2 mm. Similarly, contralateral callosal projection neurons were also arranged in clusters. Additionally, inputs originating from the superior temporal sulcus were found to arise from discrete clusters of neurons. Our findings demonstrate that both long-range ipsilateral and interhemispheric connections of the caudal VLPFC share a common, fine-scale clustered architecture. This study provides an anatomical framework for understanding the structural basis of information processing and interhemispheric coordination within this critical association cortex, suggesting that this architecture is fundamental to VLPFC's role in complex cognitive functions.</p>\",\"PeriodicalId\":12498,\"journal\":{\"name\":\"Frontiers in Neural Circuits\",\"volume\":\"19 \",\"pages\":\"1635105\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12417498/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neural Circuits\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncir.2025.1635105\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neural Circuits","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncir.2025.1635105","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Clustered architecture of ipsilateral and interhemispheric connections in macaque ventrolateral prefrontal cortex.
The fine-scale organization of intrinsic and extrinsic connections in the primate ventrolateral prefrontal cortex (VLPFC), a region essential for higher cognitive functions, remains poorly understood. This contrasts with, for example, the well-documented stripe-like intrinsic circuits of the dorsolateral prefrontal cortex (DLPFC). To elucidate the circuit architecture supporting VLPFC function, we investigated the spatial organization of connections targeting the caudal VLPFC (primarily area 45A) in macaque monkeys using multiple retrograde tracers. Analyzing the distribution of labeled neurons in flattened tangential sections revealed that laterally projecting connections within the same hemisphere formed distinct clusters, not only in the VLPFC but also in the DLPFC. These clusters often spanned multiple cortical layers, suggesting a columnar-like organization. The width (minor axis) of these clusters was approximately 1.2 mm. Similarly, contralateral callosal projection neurons were also arranged in clusters. Additionally, inputs originating from the superior temporal sulcus were found to arise from discrete clusters of neurons. Our findings demonstrate that both long-range ipsilateral and interhemispheric connections of the caudal VLPFC share a common, fine-scale clustered architecture. This study provides an anatomical framework for understanding the structural basis of information processing and interhemispheric coordination within this critical association cortex, suggesting that this architecture is fundamental to VLPFC's role in complex cognitive functions.
期刊介绍:
Frontiers in Neural Circuits publishes rigorously peer-reviewed research on the emergent properties of neural circuits - the elementary modules of the brain. Specialty Chief Editors Takao K. Hensch and Edward Ruthazer at Harvard University and McGill University respectively, are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Frontiers in Neural Circuits launched in 2011 with great success and remains a "central watering hole" for research in neural circuits, serving the community worldwide to share data, ideas and inspiration. Articles revealing the anatomy, physiology, development or function of any neural circuitry in any species (from sponges to humans) are welcome. Our common thread seeks the computational strategies used by different circuits to link their structure with function (perceptual, motor, or internal), the general rules by which they operate, and how their particular designs lead to the emergence of complex properties and behaviors. Submissions focused on synaptic, cellular and connectivity principles in neural microcircuits using multidisciplinary approaches, especially newer molecular, developmental and genetic tools, are encouraged. Studies with an evolutionary perspective to better understand how circuit design and capabilities evolved to produce progressively more complex properties and behaviors are especially welcome. The journal is further interested in research revealing how plasticity shapes the structural and functional architecture of neural circuits.