{"title":"探讨mTOR通路在衰老及年龄相关疾病中的作用。","authors":"Komal Raghuvanshi, Disha Raghuvanshi, Dinesh Kumar, Eugenie Nepovimova, Marian Valko, Kamil Kuca, Rachna Verma","doi":"10.17179/excli2025-8384","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is a highly intricate biochemical process. There is strong evidence suggesting that organismal aging, age-dependent diseases, and cellular senescence are related to the mammalian target of rapamycin (mTOR) signaling pathway. The signaling pathway of mTOR has become a prominent regulatory hub, managing crucial cellular activities that significantly affect lifespan and longevity. The mTOR is involved in controlling cell growth and metabolism in response to both internal and external energy signals as well as growth factors. The interaction between mTOR and cellular homeostasis is crucial in the aging process. This extensive review summarizes the most recent findings on mTOR inhibitors in the context of aging, highlighting their complex interactions with cellular systems, effect on longevity, and potential as therapeutic approaches for age-related diseases. Rapamycin and rapalogs (analogs of rapamycin), which have been proven to be effective mTOR inhibitors, have the ability to reduce the aging process in several model species while also enhancing metabolic health and stress responses. Despite cellular factors, mTOR inhibitors have revealed a potential path for therapeutics in age-related illnesses. These results suggest mTOR inhibitors as potential therapies to address the complex aspects of age-related diseases. However, obstacles stand in the way of clinical translation. Further research is required to improve dosing protocols, reduce potential side effects, and target mTOR inhibitors precisely at specific tissues. In summary, the mTOR signaling pathway is an important node in the intricate web of aging and its associated disorders.</p>","PeriodicalId":12247,"journal":{"name":"EXCLI Journal","volume":"24 ","pages":"992-1015"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419451/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the role of mTOR pathway in aging and age-related disorders.\",\"authors\":\"Komal Raghuvanshi, Disha Raghuvanshi, Dinesh Kumar, Eugenie Nepovimova, Marian Valko, Kamil Kuca, Rachna Verma\",\"doi\":\"10.17179/excli2025-8384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aging is a highly intricate biochemical process. There is strong evidence suggesting that organismal aging, age-dependent diseases, and cellular senescence are related to the mammalian target of rapamycin (mTOR) signaling pathway. The signaling pathway of mTOR has become a prominent regulatory hub, managing crucial cellular activities that significantly affect lifespan and longevity. The mTOR is involved in controlling cell growth and metabolism in response to both internal and external energy signals as well as growth factors. The interaction between mTOR and cellular homeostasis is crucial in the aging process. This extensive review summarizes the most recent findings on mTOR inhibitors in the context of aging, highlighting their complex interactions with cellular systems, effect on longevity, and potential as therapeutic approaches for age-related diseases. Rapamycin and rapalogs (analogs of rapamycin), which have been proven to be effective mTOR inhibitors, have the ability to reduce the aging process in several model species while also enhancing metabolic health and stress responses. Despite cellular factors, mTOR inhibitors have revealed a potential path for therapeutics in age-related illnesses. These results suggest mTOR inhibitors as potential therapies to address the complex aspects of age-related diseases. However, obstacles stand in the way of clinical translation. Further research is required to improve dosing protocols, reduce potential side effects, and target mTOR inhibitors precisely at specific tissues. In summary, the mTOR signaling pathway is an important node in the intricate web of aging and its associated disorders.</p>\",\"PeriodicalId\":12247,\"journal\":{\"name\":\"EXCLI Journal\",\"volume\":\"24 \",\"pages\":\"992-1015\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419451/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EXCLI Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.17179/excli2025-8384\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EXCLI Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.17179/excli2025-8384","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Exploring the role of mTOR pathway in aging and age-related disorders.
Aging is a highly intricate biochemical process. There is strong evidence suggesting that organismal aging, age-dependent diseases, and cellular senescence are related to the mammalian target of rapamycin (mTOR) signaling pathway. The signaling pathway of mTOR has become a prominent regulatory hub, managing crucial cellular activities that significantly affect lifespan and longevity. The mTOR is involved in controlling cell growth and metabolism in response to both internal and external energy signals as well as growth factors. The interaction between mTOR and cellular homeostasis is crucial in the aging process. This extensive review summarizes the most recent findings on mTOR inhibitors in the context of aging, highlighting their complex interactions with cellular systems, effect on longevity, and potential as therapeutic approaches for age-related diseases. Rapamycin and rapalogs (analogs of rapamycin), which have been proven to be effective mTOR inhibitors, have the ability to reduce the aging process in several model species while also enhancing metabolic health and stress responses. Despite cellular factors, mTOR inhibitors have revealed a potential path for therapeutics in age-related illnesses. These results suggest mTOR inhibitors as potential therapies to address the complex aspects of age-related diseases. However, obstacles stand in the way of clinical translation. Further research is required to improve dosing protocols, reduce potential side effects, and target mTOR inhibitors precisely at specific tissues. In summary, the mTOR signaling pathway is an important node in the intricate web of aging and its associated disorders.
期刊介绍:
EXCLI Journal publishes original research reports, authoritative reviews and case reports of experimental and clinical sciences.
The journal is particularly keen to keep a broad view of science and technology, and therefore welcomes papers which bridge disciplines and may not suit the narrow specialism of other journals. Although the general emphasis is on biological sciences, studies from the following fields are explicitly encouraged (alphabetical order):
aging research, behavioral sciences, biochemistry, cell biology, chemistry including analytical chemistry, clinical and preclinical studies, drug development, environmental health, ergonomics, forensic medicine, genetics, hepatology and gastroenterology, immunology, neurosciences, occupational medicine, oncology and cancer research, pharmacology, proteomics, psychiatric research, psychology, systems biology, toxicology