{"title":"联想记忆网络中连续学习的自主检索。","authors":"Paul Saighi, Marcelo Rozenberg","doi":"10.3389/fncom.2025.1655701","DOIUrl":null,"url":null,"abstract":"<p><p>The brain's faculty to assimilate and retain information, continually updating its memory while limiting the loss of valuable past knowledge, remains largely a mystery. We address this challenge related to continuous learning in the context of associative memory networks, where the sequential storage of correlated patterns typically requires non-local learning rules or external memory systems. Our work demonstrates how incorporating biologically inspired inhibitory plasticity enables networks to autonomously explore their attractor landscape. The algorithm presented here allows for the autonomous retrieval of stored patterns, enabling the progressive incorporation of correlated memories. This mechanism is reminiscent of memory consolidation during sleep-like states in the mammalian central nervous system. The resulting framework provides insights into how neural circuits might maintain memories through purely local interactions and takes a step forward toward a more biologically plausible mechanism for memory rehearsal and continuous learning.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1655701"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418250/pdf/","citationCount":"0","resultStr":"{\"title\":\"Autonomous retrieval for continuous learning in associative memory networks.\",\"authors\":\"Paul Saighi, Marcelo Rozenberg\",\"doi\":\"10.3389/fncom.2025.1655701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain's faculty to assimilate and retain information, continually updating its memory while limiting the loss of valuable past knowledge, remains largely a mystery. We address this challenge related to continuous learning in the context of associative memory networks, where the sequential storage of correlated patterns typically requires non-local learning rules or external memory systems. Our work demonstrates how incorporating biologically inspired inhibitory plasticity enables networks to autonomously explore their attractor landscape. The algorithm presented here allows for the autonomous retrieval of stored patterns, enabling the progressive incorporation of correlated memories. This mechanism is reminiscent of memory consolidation during sleep-like states in the mammalian central nervous system. The resulting framework provides insights into how neural circuits might maintain memories through purely local interactions and takes a step forward toward a more biologically plausible mechanism for memory rehearsal and continuous learning.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"19 \",\"pages\":\"1655701\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418250/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2025.1655701\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1655701","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Autonomous retrieval for continuous learning in associative memory networks.
The brain's faculty to assimilate and retain information, continually updating its memory while limiting the loss of valuable past knowledge, remains largely a mystery. We address this challenge related to continuous learning in the context of associative memory networks, where the sequential storage of correlated patterns typically requires non-local learning rules or external memory systems. Our work demonstrates how incorporating biologically inspired inhibitory plasticity enables networks to autonomously explore their attractor landscape. The algorithm presented here allows for the autonomous retrieval of stored patterns, enabling the progressive incorporation of correlated memories. This mechanism is reminiscent of memory consolidation during sleep-like states in the mammalian central nervous system. The resulting framework provides insights into how neural circuits might maintain memories through purely local interactions and takes a step forward toward a more biologically plausible mechanism for memory rehearsal and continuous learning.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro