桥接创新与效率:自动驾驶实验室作为化学可持续驱动力的承诺与挑战。

IF 1.6 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Chimia Pub Date : 2025-09-10 DOI:10.2533/chimia.2025.600
Florian A Formica, Edlyn Wu, Lucien Brey, Daniel Pacheco Gutiérrez, Riccardo Barbano, Hermann Tribukait, José Miguel Hernández-Lobato, Paco Laveille, Loïc M Roch
{"title":"桥接创新与效率:自动驾驶实验室作为化学可持续驱动力的承诺与挑战。","authors":"Florian A Formica, Edlyn Wu, Lucien Brey, Daniel Pacheco Gutiérrez, Riccardo Barbano, Hermann Tribukait, José Miguel Hernández-Lobato, Paco Laveille, Loïc M Roch","doi":"10.2533/chimia.2025.600","DOIUrl":null,"url":null,"abstract":"<p><p>Self-driving laboratories (SDLs) are reshaping scientific discovery by combining robotics, artificial intelligence (AI), and data science to automate the full Design-Make-Test-Analyze (DMTA) cycle. This review highlights how SDLs address the inefficiencies of traditional trial-and-error methods through intelligent, autonomous experimentation. We explore key advances in AI, automation, and data infrastructure, as well as the remaining technical challenges. Applications across organic synthesis, materials science, and biotechnology (e.g. such as catalytic reaction optimization, solid-state synthesis, and protein engineering) demonstrate their transformative potential. A recurring theme is the role of SDLs in promoting sustainability by miniaturizing reactions and maximizing sample efficiency through AI and machine learning. Finally, we discuss the requirements for broader adoption, including robust hardware, interoperable software, and high-quality datasets, positioning SDLs as essential tools for next-generation sustainable research.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"79 9","pages":"600-605"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Innovation and Efficiency: The Promises and Challenges of Self-Driving Labs as Sustainable Drivers for Chemistry.\",\"authors\":\"Florian A Formica, Edlyn Wu, Lucien Brey, Daniel Pacheco Gutiérrez, Riccardo Barbano, Hermann Tribukait, José Miguel Hernández-Lobato, Paco Laveille, Loïc M Roch\",\"doi\":\"10.2533/chimia.2025.600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-driving laboratories (SDLs) are reshaping scientific discovery by combining robotics, artificial intelligence (AI), and data science to automate the full Design-Make-Test-Analyze (DMTA) cycle. This review highlights how SDLs address the inefficiencies of traditional trial-and-error methods through intelligent, autonomous experimentation. We explore key advances in AI, automation, and data infrastructure, as well as the remaining technical challenges. Applications across organic synthesis, materials science, and biotechnology (e.g. such as catalytic reaction optimization, solid-state synthesis, and protein engineering) demonstrate their transformative potential. A recurring theme is the role of SDLs in promoting sustainability by miniaturizing reactions and maximizing sample efficiency through AI and machine learning. Finally, we discuss the requirements for broader adoption, including robust hardware, interoperable software, and high-quality datasets, positioning SDLs as essential tools for next-generation sustainable research.</p>\",\"PeriodicalId\":9957,\"journal\":{\"name\":\"Chimia\",\"volume\":\"79 9\",\"pages\":\"600-605\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2533/chimia.2025.600\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2025.600","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶实验室(sdl)正在通过结合机器人技术、人工智能(AI)和数据科学来重塑科学发现,使整个设计-制造-测试-分析(DMTA)周期自动化。这篇综述强调了wsdl如何通过智能的、自主的实验来解决传统试错方法的低效率问题。我们将探讨人工智能、自动化和数据基础设施方面的关键进展,以及剩余的技术挑战。有机合成、材料科学和生物技术(如催化反应优化、固态合成和蛋白质工程)的应用展示了它们的变革潜力。一个反复出现的主题是sdl在通过人工智能和机器学习实现反应小型化和样品效率最大化来促进可持续性方面的作用。最后,我们讨论了更广泛采用的需求,包括强大的硬件,可互操作的软件和高质量的数据集,将SDLs定位为下一代可持续研究的基本工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging Innovation and Efficiency: The Promises and Challenges of Self-Driving Labs as Sustainable Drivers for Chemistry.

Self-driving laboratories (SDLs) are reshaping scientific discovery by combining robotics, artificial intelligence (AI), and data science to automate the full Design-Make-Test-Analyze (DMTA) cycle. This review highlights how SDLs address the inefficiencies of traditional trial-and-error methods through intelligent, autonomous experimentation. We explore key advances in AI, automation, and data infrastructure, as well as the remaining technical challenges. Applications across organic synthesis, materials science, and biotechnology (e.g. such as catalytic reaction optimization, solid-state synthesis, and protein engineering) demonstrate their transformative potential. A recurring theme is the role of SDLs in promoting sustainability by miniaturizing reactions and maximizing sample efficiency through AI and machine learning. Finally, we discuss the requirements for broader adoption, including robust hardware, interoperable software, and high-quality datasets, positioning SDLs as essential tools for next-generation sustainable research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimia
Chimia 化学-化学综合
CiteScore
1.60
自引率
0.00%
发文量
144
审稿时长
2 months
期刊介绍: CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信