Urangua Jargalsaikhan, Nathanael Leung, Hongbo Wan, Bo Su, Tan Sui
{"title":"不同柔性聚合物相仿生牙陶瓷复合材料断裂增韧机理的原位研究。","authors":"Urangua Jargalsaikhan, Nathanael Leung, Hongbo Wan, Bo Su, Tan Sui","doi":"10.1016/j.dental.2025.09.007","DOIUrl":null,"url":null,"abstract":"<p><p>Bioinspired ceramic composites are promising alternatives to traditional dental ceramics. Their complex lamellar architectures and structural components enable successful clinical application, particularly for withstanding the masticatory forces of the oral environment. Bi-directional freeze-casting can be utilized to overcome the limitation of brittleness and enhance the overall toughness. This research focuses on developing a reliable, in situ, high-resolution, micromechanical characterization technique to investigate the phase-dependent toughening mechanisms of bioinspired alumina (Al<sub>2</sub>O<sub>3</sub>)-based composites with different polymers, ultimately aiding the development of bioinspired ceramic composites. Real-time in situ SEM observations during fracture toughness testing revealed characteristic zig-zag crack paths in all composites, indicating significantly higher energy dissipation compared to monolithic Al<sub>2</sub>O<sub>3</sub>. The results suggest that the enhanced fracture resistance of these composites is primarily governed by their multiscale microstructural features, which are, in turn, dictated by the individual properties of each phase.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ investigation of the fracture toughening mechanisms of bioinspired dental ceramic composites with different compliant polymer phases.\",\"authors\":\"Urangua Jargalsaikhan, Nathanael Leung, Hongbo Wan, Bo Su, Tan Sui\",\"doi\":\"10.1016/j.dental.2025.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioinspired ceramic composites are promising alternatives to traditional dental ceramics. Their complex lamellar architectures and structural components enable successful clinical application, particularly for withstanding the masticatory forces of the oral environment. Bi-directional freeze-casting can be utilized to overcome the limitation of brittleness and enhance the overall toughness. This research focuses on developing a reliable, in situ, high-resolution, micromechanical characterization technique to investigate the phase-dependent toughening mechanisms of bioinspired alumina (Al<sub>2</sub>O<sub>3</sub>)-based composites with different polymers, ultimately aiding the development of bioinspired ceramic composites. Real-time in situ SEM observations during fracture toughness testing revealed characteristic zig-zag crack paths in all composites, indicating significantly higher energy dissipation compared to monolithic Al<sub>2</sub>O<sub>3</sub>. The results suggest that the enhanced fracture resistance of these composites is primarily governed by their multiscale microstructural features, which are, in turn, dictated by the individual properties of each phase.</p>\",\"PeriodicalId\":298,\"journal\":{\"name\":\"Dental Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dental.2025.09.007\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2025.09.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
In situ investigation of the fracture toughening mechanisms of bioinspired dental ceramic composites with different compliant polymer phases.
Bioinspired ceramic composites are promising alternatives to traditional dental ceramics. Their complex lamellar architectures and structural components enable successful clinical application, particularly for withstanding the masticatory forces of the oral environment. Bi-directional freeze-casting can be utilized to overcome the limitation of brittleness and enhance the overall toughness. This research focuses on developing a reliable, in situ, high-resolution, micromechanical characterization technique to investigate the phase-dependent toughening mechanisms of bioinspired alumina (Al2O3)-based composites with different polymers, ultimately aiding the development of bioinspired ceramic composites. Real-time in situ SEM observations during fracture toughness testing revealed characteristic zig-zag crack paths in all composites, indicating significantly higher energy dissipation compared to monolithic Al2O3. The results suggest that the enhanced fracture resistance of these composites is primarily governed by their multiscale microstructural features, which are, in turn, dictated by the individual properties of each phase.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.