Shahrukh Khan, Humaira Batool, Huraira Tariq, Aneeqa Noor
{"title":"基于氧化石墨烯的光热和光动力疗法-系统综述","authors":"Shahrukh Khan, Humaira Batool, Huraira Tariq, Aneeqa Noor","doi":"10.1002/jbm.b.35656","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Photothermal therapy and photodynamic therapy are two advanced strategies used in modern medicine that rely on the use of innovative materials with high photothermal abilities. As graphene oxide and reduced graphene oxide possess a unique ability to respond to near-infrared light in a broadband range and efficiently convert it into heat, they have proved to be ideal nanomaterials to engineer efficient and multifunctional photothermal agents. A lot of research has been done to fabricate efficient graphene oxide-based photothermal platforms that can be used for photothermal and photodynamic therapy. The practicality of a number of these agents has been tested in various biomedical applications, mostly using antimicrobial and anticancer models, both in vitro and in vivo. In this review, we systematically analyzed all the studies published in the past decade on graphene-based photothermal nanosystems tested for effective use in phototherapies/combined therapies in various biomedical applications. The search strategy involved the use of specific keywords and Boolean operators and was limited by the full-text availability of articles on PubMed. This review outlines the design of various graphene-based photothermal platforms, their effectiveness in enhancing therapeutic outcomes, and their limitations that pose a hurdle in the standardization and clinical translation of these platforms. Moreover, through a critical analysis of persisting gaps in current designs, this review can assist in guiding researchers to devise an ideal multifunctional nanosystem for phototherapy that combines the effective properties of different agents and overcomes the shortcomings of existing platforms.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene Oxide-Based Photothermal and Photodynamic Therapy—A Systematic Review\",\"authors\":\"Shahrukh Khan, Humaira Batool, Huraira Tariq, Aneeqa Noor\",\"doi\":\"10.1002/jbm.b.35656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Photothermal therapy and photodynamic therapy are two advanced strategies used in modern medicine that rely on the use of innovative materials with high photothermal abilities. As graphene oxide and reduced graphene oxide possess a unique ability to respond to near-infrared light in a broadband range and efficiently convert it into heat, they have proved to be ideal nanomaterials to engineer efficient and multifunctional photothermal agents. A lot of research has been done to fabricate efficient graphene oxide-based photothermal platforms that can be used for photothermal and photodynamic therapy. The practicality of a number of these agents has been tested in various biomedical applications, mostly using antimicrobial and anticancer models, both in vitro and in vivo. In this review, we systematically analyzed all the studies published in the past decade on graphene-based photothermal nanosystems tested for effective use in phototherapies/combined therapies in various biomedical applications. The search strategy involved the use of specific keywords and Boolean operators and was limited by the full-text availability of articles on PubMed. This review outlines the design of various graphene-based photothermal platforms, their effectiveness in enhancing therapeutic outcomes, and their limitations that pose a hurdle in the standardization and clinical translation of these platforms. Moreover, through a critical analysis of persisting gaps in current designs, this review can assist in guiding researchers to devise an ideal multifunctional nanosystem for phototherapy that combines the effective properties of different agents and overcomes the shortcomings of existing platforms.</p>\\n </div>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"113 9\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35656\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35656","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Graphene Oxide-Based Photothermal and Photodynamic Therapy—A Systematic Review
Photothermal therapy and photodynamic therapy are two advanced strategies used in modern medicine that rely on the use of innovative materials with high photothermal abilities. As graphene oxide and reduced graphene oxide possess a unique ability to respond to near-infrared light in a broadband range and efficiently convert it into heat, they have proved to be ideal nanomaterials to engineer efficient and multifunctional photothermal agents. A lot of research has been done to fabricate efficient graphene oxide-based photothermal platforms that can be used for photothermal and photodynamic therapy. The practicality of a number of these agents has been tested in various biomedical applications, mostly using antimicrobial and anticancer models, both in vitro and in vivo. In this review, we systematically analyzed all the studies published in the past decade on graphene-based photothermal nanosystems tested for effective use in phototherapies/combined therapies in various biomedical applications. The search strategy involved the use of specific keywords and Boolean operators and was limited by the full-text availability of articles on PubMed. This review outlines the design of various graphene-based photothermal platforms, their effectiveness in enhancing therapeutic outcomes, and their limitations that pose a hurdle in the standardization and clinical translation of these platforms. Moreover, through a critical analysis of persisting gaps in current designs, this review can assist in guiding researchers to devise an ideal multifunctional nanosystem for phototherapy that combines the effective properties of different agents and overcomes the shortcomings of existing platforms.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.