相对有界和相对迹类摄动下自伴随算子的函数

IF 0.8 3区 数学 Q2 MATHEMATICS
A. B. Aleksandrov, V. V. Peller
{"title":"相对有界和相对迹类摄动下自伴随算子的函数","authors":"A. B. Aleksandrov,&nbsp;V. V. Peller","doi":"10.1002/mana.70000","DOIUrl":null,"url":null,"abstract":"<p>We study the behaviour of functions of self-adjoint operators under relatively bounded and relatively trace class perturbation. We introduce and study the class of relatively operator Lipschitz functions. An essential role is played by double operator integrals. We also consider the class of resolvent Lipschitz functions. Then we obtain a trace formula in the case of relatively trace class perturbations and show that the maximal class of function for which the trace formula holds in the case of relatively trace class perturbations coincides with the class of relatively operator Lipschitz functions. Our methods also give us a new approach to the inequality <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∫</mo>\n <mo>|</mo>\n <mrow>\n <mi>ξ</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n <mo>(</mo>\n <mn>1</mn>\n </mrow>\n <mo>+</mo>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>t</mi>\n <mo>|</mo>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mspace></mspace>\n <mi>d</mi>\n <mi>t</mi>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\int |\\bm{\\xi }(t)|(1+|t|)^{-1}\\,{\\rm d}t&lt;\\infty$</annotation>\n </semantics></math> for the spectral shift function <span></span><math>\n <semantics>\n <mrow>\n <mi>ξ</mi>\n </mrow>\n <annotation>$\\bm{\\xi }$</annotation>\n </semantics></math> in the case of relatively trace class perturbations.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3027-3048"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functions of self-adjoint operators under relatively bounded and relatively trace class perturbations\",\"authors\":\"A. B. Aleksandrov,&nbsp;V. V. Peller\",\"doi\":\"10.1002/mana.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the behaviour of functions of self-adjoint operators under relatively bounded and relatively trace class perturbation. We introduce and study the class of relatively operator Lipschitz functions. An essential role is played by double operator integrals. We also consider the class of resolvent Lipschitz functions. Then we obtain a trace formula in the case of relatively trace class perturbations and show that the maximal class of function for which the trace formula holds in the case of relatively trace class perturbations coincides with the class of relatively operator Lipschitz functions. Our methods also give us a new approach to the inequality <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>∫</mo>\\n <mo>|</mo>\\n <mrow>\\n <mi>ξ</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>|</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>+</mo>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n <mi>t</mi>\\n <mo>|</mo>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mspace></mspace>\\n <mi>d</mi>\\n <mi>t</mi>\\n <mo>&lt;</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$\\\\int |\\\\bm{\\\\xi }(t)|(1+|t|)^{-1}\\\\,{\\\\rm d}t&lt;\\\\infty$</annotation>\\n </semantics></math> for the spectral shift function <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ξ</mi>\\n </mrow>\\n <annotation>$\\\\bm{\\\\xi }$</annotation>\\n </semantics></math> in the case of relatively trace class perturbations.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 9\",\"pages\":\"3027-3048\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70000\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70000","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了自伴随算子函数在相对有界和相对迹类摄动下的行为。介绍并研究了一类相对算子Lipschitz函数。二重算子积分起着重要的作用。我们还考虑了一类可分解的Lipschitz函数。然后,我们得到了相对微扰情况下的迹公式,并证明了在相对微扰情况下,迹公式成立的最大函数类与相对算子Lipschitz函数类重合。我们的方法也给出了求解不等式∫| ξ (t) |(1 + |)的新方法T |)−1 d T &lt;∞$\int |\bm{\xi }(t)|(1+|t|)^{-1}\,{\rm d}t<\infty$对于谱移函数ξ $\bm{\xi }$ in相对微量类扰动的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functions of self-adjoint operators under relatively bounded and relatively trace class perturbations

We study the behaviour of functions of self-adjoint operators under relatively bounded and relatively trace class perturbation. We introduce and study the class of relatively operator Lipschitz functions. An essential role is played by double operator integrals. We also consider the class of resolvent Lipschitz functions. Then we obtain a trace formula in the case of relatively trace class perturbations and show that the maximal class of function for which the trace formula holds in the case of relatively trace class perturbations coincides with the class of relatively operator Lipschitz functions. Our methods also give us a new approach to the inequality | ξ ( t ) | ( 1 + | t | ) 1 d t < $\int |\bm{\xi }(t)|(1+|t|)^{-1}\,{\rm d}t<\infty$ for the spectral shift function ξ $\bm{\xi }$ in the case of relatively trace class perturbations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信