自旋(7)$ {\rm自旋}(7)$流形和广义Ricci孤子上扭转连接的黎曼曲率恒等

IF 0.8 3区 数学 Q2 MATHEMATICS
Stefan Ivanov, Alexander Petkov
{"title":"自旋(7)$ {\\rm自旋}(7)$流形和广义Ricci孤子上扭转连接的黎曼曲率恒等","authors":"Stefan Ivanov,&nbsp;Alexander Petkov","doi":"10.1002/mana.12021","DOIUrl":null,"url":null,"abstract":"<p>It is shown that on compact <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-manifold with exterior derivative of the Lee form lying in the Lie algebra <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math> the curvature <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> of the <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>–torsion connection <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>∈</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <msup>\n <mi>Λ</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$R\\in S^2\\Lambda ^2$</annotation>\n </semantics></math> with vanishing Ricci tensor if and only if the 3-form torsion is parallel with respect to the Levi-Civita connection. It is also proved that <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> satisfies the Riemannian first Bianchi identity exactly when the 3-form torsion is parallel with respect to the Levi-Civita and to the <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-torsion connections simultaneously. Precise conditions for a compact <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-manifold to has closed torsion are given in terms of the Ricci tensor of the <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-torsion connection. It is shown that a compact <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-manifold with closed torsion is Ricci flat if and only if either the norm of the torsion or the Riemannian scalar curvature is constant. It is proved that any compact <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-manifold with closed torsion 3-form is a generalized gradient Ricci soliton and this is equivalent to a certain vector field to be parallel with respect to the torsion connection. In particular, this vector field preserves the <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-structure.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"2906-2925"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Riemannian curvature identities for the torsion connection on \\n \\n \\n Spin\\n (\\n 7\\n )\\n \\n ${\\\\rm Spin}(7)$\\n —Manifold and generalized Ricci solitons\",\"authors\":\"Stefan Ivanov,&nbsp;Alexander Petkov\",\"doi\":\"10.1002/mana.12021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that on compact <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-manifold with exterior derivative of the Lee form lying in the Lie algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math> the curvature <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>–torsion connection <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <msup>\\n <mi>Λ</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$R\\\\in S^2\\\\Lambda ^2$</annotation>\\n </semantics></math> with vanishing Ricci tensor if and only if the 3-form torsion is parallel with respect to the Levi-Civita connection. It is also proved that <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> satisfies the Riemannian first Bianchi identity exactly when the 3-form torsion is parallel with respect to the Levi-Civita and to the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-torsion connections simultaneously. Precise conditions for a compact <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-manifold to has closed torsion are given in terms of the Ricci tensor of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-torsion connection. It is shown that a compact <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-manifold with closed torsion is Ricci flat if and only if either the norm of the torsion or the Riemannian scalar curvature is constant. It is proved that any compact <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-manifold with closed torsion 3-form is a generalized gradient Ricci soliton and this is equivalent to a certain vector field to be parallel with respect to the torsion connection. In particular, this vector field preserves the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-structure.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 9\",\"pages\":\"2906-2925\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12021\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了紧化自旋(7)$ {\rm自旋}(7)$流形上李形式的外导数在李代数自旋(7)$ {\rm自旋}(7)$上曲率R$ R$自旋(7)$ {\rm自旋}(7)$ -扭转连接R∈s2 Λ 2$ R\in S^2\Lambda ^2$里奇张量当且仅当三维扭转相对于列维-西维塔连接是平行的。同时证明了当3型扭转同时平行于Levi-Civita和Spin (7)$ {\rm Spin}(7)$ -扭转连接时,R$ R$满足黎曼第一Bianchi恒等式。利用自旋(7)$ {\rm自旋}(7)$ -扭转连接的里奇张量,给出了紧化自旋(7)$ {\rm自旋}(7)$ -扭转具有闭合扭转的精确条件。证明了具有闭合扭转的紧化Spin (7)$ {\rm Spin}(7)$流形是Ricci平坦的当且仅当扭转范数或黎曼标量曲率的范数为常数。证明了任何紧旋旋(7)$ {\rm旋旋}(7)$ -具有闭扭转3型的流形都是一个广义梯度Ricci孤子,这等价于一个向量场相对于扭转连接是平行的。特别地,这个向量场保留了Spin (7)$ {\rm Spin}(7)$ -结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Riemannian curvature identities for the torsion connection on Spin ( 7 ) ${\rm Spin}(7)$ —Manifold and generalized Ricci solitons

It is shown that on compact Spin ( 7 ) ${\rm Spin}(7)$ -manifold with exterior derivative of the Lee form lying in the Lie algebra Spin ( 7 ) ${\rm Spin}(7)$ the curvature R $R$ of the Spin ( 7 ) ${\rm Spin}(7)$ –torsion connection R S 2 Λ 2 $R\in S^2\Lambda ^2$ with vanishing Ricci tensor if and only if the 3-form torsion is parallel with respect to the Levi-Civita connection. It is also proved that R $R$ satisfies the Riemannian first Bianchi identity exactly when the 3-form torsion is parallel with respect to the Levi-Civita and to the Spin ( 7 ) ${\rm Spin}(7)$ -torsion connections simultaneously. Precise conditions for a compact Spin ( 7 ) ${\rm Spin}(7)$ -manifold to has closed torsion are given in terms of the Ricci tensor of the Spin ( 7 ) ${\rm Spin}(7)$ -torsion connection. It is shown that a compact Spin ( 7 ) ${\rm Spin}(7)$ -manifold with closed torsion is Ricci flat if and only if either the norm of the torsion or the Riemannian scalar curvature is constant. It is proved that any compact Spin ( 7 ) ${\rm Spin}(7)$ -manifold with closed torsion 3-form is a generalized gradient Ricci soliton and this is equivalent to a certain vector field to be parallel with respect to the torsion connection. In particular, this vector field preserves the Spin ( 7 ) ${\rm Spin}(7)$ -structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信