{"title":"自旋(7)$ {\\rm自旋}(7)$流形和广义Ricci孤子上扭转连接的黎曼曲率恒等","authors":"Stefan Ivanov, Alexander Petkov","doi":"10.1002/mana.12021","DOIUrl":null,"url":null,"abstract":"<p>It is shown that on compact <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-manifold with exterior derivative of the Lee form lying in the Lie algebra <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math> the curvature <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> of the <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>–torsion connection <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>∈</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <msup>\n <mi>Λ</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$R\\in S^2\\Lambda ^2$</annotation>\n </semantics></math> with vanishing Ricci tensor if and only if the 3-form torsion is parallel with respect to the Levi-Civita connection. It is also proved that <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> satisfies the Riemannian first Bianchi identity exactly when the 3-form torsion is parallel with respect to the Levi-Civita and to the <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-torsion connections simultaneously. Precise conditions for a compact <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-manifold to has closed torsion are given in terms of the Ricci tensor of the <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-torsion connection. It is shown that a compact <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-manifold with closed torsion is Ricci flat if and only if either the norm of the torsion or the Riemannian scalar curvature is constant. It is proved that any compact <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-manifold with closed torsion 3-form is a generalized gradient Ricci soliton and this is equivalent to a certain vector field to be parallel with respect to the torsion connection. In particular, this vector field preserves the <span></span><math>\n <semantics>\n <mrow>\n <mi>Spin</mi>\n <mo>(</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Spin}(7)$</annotation>\n </semantics></math>-structure.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"2906-2925"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Riemannian curvature identities for the torsion connection on \\n \\n \\n Spin\\n (\\n 7\\n )\\n \\n ${\\\\rm Spin}(7)$\\n —Manifold and generalized Ricci solitons\",\"authors\":\"Stefan Ivanov, Alexander Petkov\",\"doi\":\"10.1002/mana.12021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that on compact <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-manifold with exterior derivative of the Lee form lying in the Lie algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math> the curvature <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>–torsion connection <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <msup>\\n <mi>Λ</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$R\\\\in S^2\\\\Lambda ^2$</annotation>\\n </semantics></math> with vanishing Ricci tensor if and only if the 3-form torsion is parallel with respect to the Levi-Civita connection. It is also proved that <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> satisfies the Riemannian first Bianchi identity exactly when the 3-form torsion is parallel with respect to the Levi-Civita and to the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-torsion connections simultaneously. Precise conditions for a compact <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-manifold to has closed torsion are given in terms of the Ricci tensor of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-torsion connection. It is shown that a compact <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-manifold with closed torsion is Ricci flat if and only if either the norm of the torsion or the Riemannian scalar curvature is constant. It is proved that any compact <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-manifold with closed torsion 3-form is a generalized gradient Ricci soliton and this is equivalent to a certain vector field to be parallel with respect to the torsion connection. In particular, this vector field preserves the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Spin</mi>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Spin}(7)$</annotation>\\n </semantics></math>-structure.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 9\",\"pages\":\"2906-2925\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12021\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Riemannian curvature identities for the torsion connection on
Spin
(
7
)
${\rm Spin}(7)$
—Manifold and generalized Ricci solitons
It is shown that on compact -manifold with exterior derivative of the Lee form lying in the Lie algebra the curvature of the –torsion connection with vanishing Ricci tensor if and only if the 3-form torsion is parallel with respect to the Levi-Civita connection. It is also proved that satisfies the Riemannian first Bianchi identity exactly when the 3-form torsion is parallel with respect to the Levi-Civita and to the -torsion connections simultaneously. Precise conditions for a compact -manifold to has closed torsion are given in terms of the Ricci tensor of the -torsion connection. It is shown that a compact -manifold with closed torsion is Ricci flat if and only if either the norm of the torsion or the Riemannian scalar curvature is constant. It is proved that any compact -manifold with closed torsion 3-form is a generalized gradient Ricci soliton and this is equivalent to a certain vector field to be parallel with respect to the torsion connection. In particular, this vector field preserves the -structure.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index