Christoph Rosinger, Golo Gotthalmseder, Gernot Bodner, Katharina M. Keiblinger, Stefan J. Forstner, Taru Sandén, Giacomo Ferretti, Moltinë Prebibaj, Reinhard W. Neugschwandtner, Hans-Peter Kaul
{"title":"土壤健康、作物产量和碳足迹在保护农业和传统农业之间的权衡:一个案例研究","authors":"Christoph Rosinger, Golo Gotthalmseder, Gernot Bodner, Katharina M. Keiblinger, Stefan J. Forstner, Taru Sandén, Giacomo Ferretti, Moltinë Prebibaj, Reinhard W. Neugschwandtner, Hans-Peter Kaul","doi":"10.1111/ejss.70194","DOIUrl":null,"url":null,"abstract":"<p>Transitioning towards soil health-oriented farming systems is fundamental to mitigate future challenges such as climate change, soil degradation, and increasing global food demands. In this study, we evaluated soil health, crop yields, and greenhouse gas (GHG) emissions at a long-term experimental site in Central Europe that comprised two cropping systems: a conventional system with regular tillage, low-diversity crop rotation, and minimal cover cropping, and a conservation system with shallow tillage, diverse crop rotation, and extensive cover cropping. We assessed soil health using 13 physico-chemical and biological parameters, calculated field-scale GHG emissions, and analysed yield dynamics over an eight-year period to evaluate potential crop yield penalties under conservation farming. We observed significant soil health advances (+7%) and reductions in GHG emissions (−43%) with conservation farming, while crop yields for all cultivated crops remained stable. Improvements in soil health were particularly pronounced for nitrogen cycling and microbial-driven processes. For several measured soil health parameters, we found a larger effect of crop species compared to farming system. Further, positive management effects on soil were apparent particularly for winter wheat and to a lesser extent for maize and sugar beet, strongly emphasizing the need for standardized soil health assessments that take crop species into account. Our study demonstrates that easily implementable conservation farming measures such as reduced tillage, increased crop diversity, and enhanced cover cropping can substantially improve soil health and long-term agricultural sustainability without compromising crop yields. Conservation farming thus emerges as a viable strategy to support resilient crop production in temperate regions.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsssjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70194","citationCount":"0","resultStr":"{\"title\":\"Soil Health, Crop Yield and Carbon Footprint Trade-Offs Between Conservation and Conventional Farming: A Case Study\",\"authors\":\"Christoph Rosinger, Golo Gotthalmseder, Gernot Bodner, Katharina M. Keiblinger, Stefan J. Forstner, Taru Sandén, Giacomo Ferretti, Moltinë Prebibaj, Reinhard W. Neugschwandtner, Hans-Peter Kaul\",\"doi\":\"10.1111/ejss.70194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transitioning towards soil health-oriented farming systems is fundamental to mitigate future challenges such as climate change, soil degradation, and increasing global food demands. In this study, we evaluated soil health, crop yields, and greenhouse gas (GHG) emissions at a long-term experimental site in Central Europe that comprised two cropping systems: a conventional system with regular tillage, low-diversity crop rotation, and minimal cover cropping, and a conservation system with shallow tillage, diverse crop rotation, and extensive cover cropping. We assessed soil health using 13 physico-chemical and biological parameters, calculated field-scale GHG emissions, and analysed yield dynamics over an eight-year period to evaluate potential crop yield penalties under conservation farming. We observed significant soil health advances (+7%) and reductions in GHG emissions (−43%) with conservation farming, while crop yields for all cultivated crops remained stable. Improvements in soil health were particularly pronounced for nitrogen cycling and microbial-driven processes. For several measured soil health parameters, we found a larger effect of crop species compared to farming system. Further, positive management effects on soil were apparent particularly for winter wheat and to a lesser extent for maize and sugar beet, strongly emphasizing the need for standardized soil health assessments that take crop species into account. Our study demonstrates that easily implementable conservation farming measures such as reduced tillage, increased crop diversity, and enhanced cover cropping can substantially improve soil health and long-term agricultural sustainability without compromising crop yields. Conservation farming thus emerges as a viable strategy to support resilient crop production in temperate regions.</p>\",\"PeriodicalId\":12043,\"journal\":{\"name\":\"European Journal of Soil Science\",\"volume\":\"76 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bsssjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70194\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://bsssjournals.onlinelibrary.wiley.com/doi/10.1111/ejss.70194\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://bsssjournals.onlinelibrary.wiley.com/doi/10.1111/ejss.70194","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Soil Health, Crop Yield and Carbon Footprint Trade-Offs Between Conservation and Conventional Farming: A Case Study
Transitioning towards soil health-oriented farming systems is fundamental to mitigate future challenges such as climate change, soil degradation, and increasing global food demands. In this study, we evaluated soil health, crop yields, and greenhouse gas (GHG) emissions at a long-term experimental site in Central Europe that comprised two cropping systems: a conventional system with regular tillage, low-diversity crop rotation, and minimal cover cropping, and a conservation system with shallow tillage, diverse crop rotation, and extensive cover cropping. We assessed soil health using 13 physico-chemical and biological parameters, calculated field-scale GHG emissions, and analysed yield dynamics over an eight-year period to evaluate potential crop yield penalties under conservation farming. We observed significant soil health advances (+7%) and reductions in GHG emissions (−43%) with conservation farming, while crop yields for all cultivated crops remained stable. Improvements in soil health were particularly pronounced for nitrogen cycling and microbial-driven processes. For several measured soil health parameters, we found a larger effect of crop species compared to farming system. Further, positive management effects on soil were apparent particularly for winter wheat and to a lesser extent for maize and sugar beet, strongly emphasizing the need for standardized soil health assessments that take crop species into account. Our study demonstrates that easily implementable conservation farming measures such as reduced tillage, increased crop diversity, and enhanced cover cropping can substantially improve soil health and long-term agricultural sustainability without compromising crop yields. Conservation farming thus emerges as a viable strategy to support resilient crop production in temperate regions.
期刊介绍:
The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.