{"title":"G$ G$ -具有系数和范数的典型威特向量","authors":"Thomas Read","doi":"10.1112/topo.70038","DOIUrl":null,"url":null,"abstract":"<p>For a profinite group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> we describe an abelian group <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>W</mi>\n <mi>G</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>;</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W_G(R; M)$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-typical Witt vectors with coefficients in an <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-module <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> (where <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is a commutative ring). This simultaneously generalises the ring <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>W</mi>\n <mi>G</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W_G(R)$</annotation>\n </semantics></math> of Dress and Siebeneicher and the Witt vectors with coefficients <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>;</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$W(R; M)$</annotation>\n </semantics></math> of Dotto, Krause, Nikolaus and Patchkoria, both of which extend the usual Witt vectors of a ring. We use this new variant of Witt vectors to give a purely algebraic description of the zeroth equivariant stable homotopy groups of the Hill–Hopkins–Ravenel norm <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>N</mi>\n <mrow>\n <mo>{</mo>\n <mi>e</mi>\n <mo>}</mo>\n </mrow>\n <mi>G</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_{\\lbrace e\\rbrace }^G(X)$</annotation>\n </semantics></math> of a connective spectrum <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, for any finite group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. Our construction is reasonably analogous to the constructions of previous variants of Witt vectors, and as such is amenable to fairly explicit concrete computations.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70038","citationCount":"0","resultStr":"{\"title\":\"G\\n $G$\\n -typical Witt vectors with coefficients and the norm\",\"authors\":\"Thomas Read\",\"doi\":\"10.1112/topo.70038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a profinite group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> we describe an abelian group <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>W</mi>\\n <mi>G</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>;</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$W_G(R; M)$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-typical Witt vectors with coefficients in an <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math>-module <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> (where <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> is a commutative ring). This simultaneously generalises the ring <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>W</mi>\\n <mi>G</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$W_G(R)$</annotation>\\n </semantics></math> of Dress and Siebeneicher and the Witt vectors with coefficients <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>;</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$W(R; M)$</annotation>\\n </semantics></math> of Dotto, Krause, Nikolaus and Patchkoria, both of which extend the usual Witt vectors of a ring. We use this new variant of Witt vectors to give a purely algebraic description of the zeroth equivariant stable homotopy groups of the Hill–Hopkins–Ravenel norm <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>N</mi>\\n <mrow>\\n <mo>{</mo>\\n <mi>e</mi>\\n <mo>}</mo>\\n </mrow>\\n <mi>G</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_{\\\\lbrace e\\\\rbrace }^G(X)$</annotation>\\n </semantics></math> of a connective spectrum <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>, for any finite group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. Our construction is reasonably analogous to the constructions of previous variants of Witt vectors, and as such is amenable to fairly explicit concrete computations.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/topo.70038\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/topo.70038","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
G
$G$
-typical Witt vectors with coefficients and the norm
For a profinite group we describe an abelian group of -typical Witt vectors with coefficients in an -module (where is a commutative ring). This simultaneously generalises the ring of Dress and Siebeneicher and the Witt vectors with coefficients of Dotto, Krause, Nikolaus and Patchkoria, both of which extend the usual Witt vectors of a ring. We use this new variant of Witt vectors to give a purely algebraic description of the zeroth equivariant stable homotopy groups of the Hill–Hopkins–Ravenel norm of a connective spectrum , for any finite group . Our construction is reasonably analogous to the constructions of previous variants of Witt vectors, and as such is amenable to fairly explicit concrete computations.
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.