推进高炉热状态预测:利用热电偶集成和多模态建模的数据驱动方法

IF 2.5 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Guanwei Zhou, Weiqiang Liu, Yaowei Yu, Henrik Saxén
{"title":"推进高炉热状态预测:利用热电偶集成和多模态建模的数据驱动方法","authors":"Guanwei Zhou,&nbsp;Weiqiang Liu,&nbsp;Yaowei Yu,&nbsp;Henrik Saxén","doi":"10.1002/srin.202400896","DOIUrl":null,"url":null,"abstract":"<p>This study develops a data-driven framework to predict the thermal state of blast furnaces using feature fusion from thermocouple data and spatial temperature distribution. The article proposes a hybrid framework based on multimodal integration and clustering algorithms, utilizing data extracted from thermocouples and the temperature distribution features around the furnace hearth. Through these fused features, multiple ensemble models are constructed to predict the thermal state of the blast furnace, with a focus on the thermocouple readings at the hearth. This method enhances understanding of the thermal state of the blast furnace, aiming to improve prediction accuracy and operational reliability. By validating the model with actual industrial data, its effectiveness in thermal state monitoring is demonstrated. The integration of multimodal data sources allows for the extraction of rich information from the thermocouple data, significantly enhancing the model's predictive performance.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 9","pages":"433-447"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Blast Furnace Thermal State Prediction: A Data-Driven Approach Using Thermocouple Integration and Multimodal Modeling\",\"authors\":\"Guanwei Zhou,&nbsp;Weiqiang Liu,&nbsp;Yaowei Yu,&nbsp;Henrik Saxén\",\"doi\":\"10.1002/srin.202400896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study develops a data-driven framework to predict the thermal state of blast furnaces using feature fusion from thermocouple data and spatial temperature distribution. The article proposes a hybrid framework based on multimodal integration and clustering algorithms, utilizing data extracted from thermocouples and the temperature distribution features around the furnace hearth. Through these fused features, multiple ensemble models are constructed to predict the thermal state of the blast furnace, with a focus on the thermocouple readings at the hearth. This method enhances understanding of the thermal state of the blast furnace, aiming to improve prediction accuracy and operational reliability. By validating the model with actual industrial data, its effectiveness in thermal state monitoring is demonstrated. The integration of multimodal data sources allows for the extraction of rich information from the thermocouple data, significantly enhancing the model's predictive performance.</p>\",\"PeriodicalId\":21929,\"journal\":{\"name\":\"steel research international\",\"volume\":\"96 9\",\"pages\":\"433-447\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"steel research international\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400896\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400896","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一个数据驱动的框架,利用热电偶数据和空间温度分布的特征融合来预测高炉的热状态。本文提出了一种基于多模态集成和聚类算法的混合框架,利用从热电偶中提取的数据和炉膛周围的温度分布特征。通过这些融合特征,构建了多个集成模型来预测高炉的热状态,重点关注炉膛处的热电偶读数。该方法增强了对高炉热状态的认识,旨在提高预测精度和运行可靠性。通过对实际工业数据的验证,验证了该模型在热状态监测中的有效性。多模态数据源的集成允许从热电偶数据中提取丰富的信息,显著提高模型的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Blast Furnace Thermal State Prediction: A Data-Driven Approach Using Thermocouple Integration and Multimodal Modeling

This study develops a data-driven framework to predict the thermal state of blast furnaces using feature fusion from thermocouple data and spatial temperature distribution. The article proposes a hybrid framework based on multimodal integration and clustering algorithms, utilizing data extracted from thermocouples and the temperature distribution features around the furnace hearth. Through these fused features, multiple ensemble models are constructed to predict the thermal state of the blast furnace, with a focus on the thermocouple readings at the hearth. This method enhances understanding of the thermal state of the blast furnace, aiming to improve prediction accuracy and operational reliability. By validating the model with actual industrial data, its effectiveness in thermal state monitoring is demonstrated. The integration of multimodal data sources allows for the extraction of rich information from the thermocouple data, significantly enhancing the model's predictive performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信