求助PDF
{"title":"c0 (K, X)$ C_{0}(K, X)$空间的准等距嵌入,当X$ X$为希尔伯特空间时,可导出等距","authors":"Elói Medina Galego","doi":"10.1002/mana.12033","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> are locally compact Hausdorff spaces and <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is a Hilbert space. It is proven that if there exist real numbers <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>≥</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$M \\ge 1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$L \\ge 0$</annotation>\n </semantics></math> and a map <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> from <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>,</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_{0}(K,X)$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_{0}(S,X)$</annotation>\n </semantics></math> satisfying\n\n </p><p>In this case, as an immediate consequence, <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> generates a linear isometry of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_{0}(K)$</annotation>\n </semantics></math> into <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_{0}(S_0)$</annotation>\n </semantics></math>. Even in the Lipschitz case (<span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$L=0$</annotation>\n </semantics></math>), this result is the first nonlinear vector generalization of a classical Jarosz theorem (1984) concerning the into linear isomorphisms of spaces of continuous functions on locally compact Hausdorff spaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"2975-2985"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-isometric embeddings of \\n \\n \\n \\n C\\n 0\\n \\n \\n (\\n K\\n ,\\n X\\n )\\n \\n \\n $C_{0}(K, X)$\\n spaces which induce isometries whenever \\n \\n X\\n $X$\\n is a Hilbert space\",\"authors\":\"Elói Medina Galego\",\"doi\":\"10.1002/mana.12033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> are locally compact Hausdorff spaces and <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> is a Hilbert space. It is proven that if there exist real numbers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>≥</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$M \\\\ge 1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$L \\\\ge 0$</annotation>\\n </semantics></math> and a map <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> from <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>,</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_{0}(K,X)$</annotation>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_{0}(S,X)$</annotation>\\n </semantics></math> satisfying\\n\\n </p><p>In this case, as an immediate consequence, <span></span><math>\\n <semantics>\\n <mi>φ</mi>\\n <annotation>$\\\\varphi$</annotation>\\n </semantics></math> generates a linear isometry of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_{0}(K)$</annotation>\\n </semantics></math> into <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>S</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_{0}(S_0)$</annotation>\\n </semantics></math>. Even in the Lipschitz case (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$L=0$</annotation>\\n </semantics></math>), this result is the first nonlinear vector generalization of a classical Jarosz theorem (1984) concerning the into linear isomorphisms of spaces of continuous functions on locally compact Hausdorff spaces.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 9\",\"pages\":\"2975-2985\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12033\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12033","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用