c0 (K, X)$ C_{0}(K, X)$空间的准等距嵌入,当X$ X$为希尔伯特空间时,可导出等距

IF 0.8 3区 数学 Q2 MATHEMATICS
Elói Medina Galego
{"title":"c0 (K, X)$ C_{0}(K, X)$空间的准等距嵌入,当X$ X$为希尔伯特空间时,可导出等距","authors":"Elói Medina Galego","doi":"10.1002/mana.12033","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> are locally compact Hausdorff spaces and <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is a Hilbert space. It is proven that if there exist real numbers <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>≥</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$M \\ge 1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$L \\ge 0$</annotation>\n </semantics></math> and a map <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> from <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>,</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_{0}(K,X)$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_{0}(S,X)$</annotation>\n </semantics></math> satisfying\n\n </p><p>In this case, as an immediate consequence, <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> generates a linear isometry of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_{0}(K)$</annotation>\n </semantics></math> into <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_{0}(S_0)$</annotation>\n </semantics></math>. Even in the Lipschitz case (<span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$L=0$</annotation>\n </semantics></math>), this result is the first nonlinear vector generalization of a classical Jarosz theorem (1984) concerning the into linear isomorphisms of spaces of continuous functions on locally compact Hausdorff spaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"2975-2985"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-isometric embeddings of \\n \\n \\n \\n C\\n 0\\n \\n \\n (\\n K\\n ,\\n X\\n )\\n \\n \\n $C_{0}(K, X)$\\n spaces which induce isometries whenever \\n \\n X\\n $X$\\n is a Hilbert space\",\"authors\":\"Elói Medina Galego\",\"doi\":\"10.1002/mana.12033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> are locally compact Hausdorff spaces and <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> is a Hilbert space. It is proven that if there exist real numbers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>≥</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$M \\\\ge 1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$L \\\\ge 0$</annotation>\\n </semantics></math> and a map <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> from <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>,</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_{0}(K,X)$</annotation>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_{0}(S,X)$</annotation>\\n </semantics></math> satisfying\\n\\n </p><p>In this case, as an immediate consequence, <span></span><math>\\n <semantics>\\n <mi>φ</mi>\\n <annotation>$\\\\varphi$</annotation>\\n </semantics></math> generates a linear isometry of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_{0}(K)$</annotation>\\n </semantics></math> into <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>S</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_{0}(S_0)$</annotation>\\n </semantics></math>. Even in the Lipschitz case (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$L=0$</annotation>\\n </semantics></math>), this result is the first nonlinear vector generalization of a classical Jarosz theorem (1984) concerning the into linear isomorphisms of spaces of continuous functions on locally compact Hausdorff spaces.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 9\",\"pages\":\"2975-2985\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12033\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12033","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设K $K$ 和S $S$ 是局部紧的Hausdorff空间和X $X$ 是希尔伯特空间。证明了如果存在实数M≥1 $M \ge 1$ , l≥0 $L \ge 0$ 和地图T $T$ 从c0 (K, X) $C_{0}(K,X)$ 到c0 (S, X) $C_{0}(S,X)$ 在这种情况下,作为直接的结果,φ $\varphi$ 生成c0 (K)的线性等距 $C_{0}(K)$ 变成c0 (s0) $C_{0}(S_0)$ 。即使在Lipschitz情况下(L = 0 $L=0$ ),这个结果是关于局部紧化Hausdorff空间上连续函数空间成线性同构的经典Jarosz定理(1984)的第一个非线性向量推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-isometric embeddings of C 0 ( K , X ) $C_{0}(K, X)$ spaces which induce isometries whenever X $X$ is a Hilbert space

Suppose that K $K$ and S $S$ are locally compact Hausdorff spaces and X $X$ is a Hilbert space. It is proven that if there exist real numbers M 1 $M \ge 1$ , L 0 $L \ge 0$ and a map T $T$ from C 0 ( K , X ) $C_{0}(K,X)$ to C 0 ( S , X ) $C_{0}(S,X)$ satisfying

In this case, as an immediate consequence, φ $\varphi$ generates a linear isometry of C 0 ( K ) $C_{0}(K)$ into C 0 ( S 0 ) $C_{0}(S_0)$ . Even in the Lipschitz case ( L = 0 $L=0$ ), this result is the first nonlinear vector generalization of a classical Jarosz theorem (1984) concerning the into linear isomorphisms of spaces of continuous functions on locally compact Hausdorff spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信