Ahmad Sajjadi, Suranjana V. Mayani, Suhas Ballal, Abhayveer Singh, Subhashree Ray, Atreyi Pramanik, Kamal Kant Joshi
{"title":"可持续交叉偶联反应催化剂Pd@CuFe₂O₄/BPMAEA的设计与表征","authors":"Ahmad Sajjadi, Suranjana V. Mayani, Suhas Ballal, Abhayveer Singh, Subhashree Ray, Atreyi Pramanik, Kamal Kant Joshi","doi":"10.1007/s11243-025-00662-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study identifies the novel palliated magnetic nanoparticles, Pd@CuFe₂O₄/BPMAEA, as an efficient and sustainable catalyst for Suzuki and Sonogashira cross-coupling reactions. The catalyst is synthesized by integrating palladium onto a magnetic CuFe₂O₄ support, which is functionalized with N,N-bis(2-pyridylmethyl)amine ethylamine (BPMAEA) as a ligand. This strategic design enhances palladium’s catalytic activity and stability while enabling easy separation and recovery of the catalyst from reaction mixtures. Comprehensive characterization techniques, including FT-IR, TEM, XRD, SEM, EDX, and VSM, confirm the successful synthesis of the Pd@CuFe₂O₄/BPMAEA nanoparticles, showcasing favorable structural and magnetic properties. The catalytic performance of the catalyst was assessed under various reaction conditions, demonstrating its remarkable efficiency in promoting both Suzuki and Sonogashira reactions with high yields and selectivity. Notably, the Pd@CuFe₂O₄/BPMAEA catalyst exhibits excellent reusability with minimal activity loss over multiple cycles, highlighting its potential for practical applications in organic synthesis. This research underscores the significance of developing sustainable catalytic systems that enhance reaction efficiency and minimize environmental impact using recoverable materials. Our findings contribute to advancing green chemistry practices in catalysis, paving the way for future innovations in sustainable organic transformations. The catalyst could easily and successfully be recycled up to six times with an E-factor as low as 29.48, a testament to its impressive efficiency and the potential it holds for the future of sustainable catalysis.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"50 5","pages":"839 - 861"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and characterization of Pd@CuFe₂O₄/BPMAEA: a sustainable catalyst for cross-coupling reactions\",\"authors\":\"Ahmad Sajjadi, Suranjana V. Mayani, Suhas Ballal, Abhayveer Singh, Subhashree Ray, Atreyi Pramanik, Kamal Kant Joshi\",\"doi\":\"10.1007/s11243-025-00662-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study identifies the novel palliated magnetic nanoparticles, Pd@CuFe₂O₄/BPMAEA, as an efficient and sustainable catalyst for Suzuki and Sonogashira cross-coupling reactions. The catalyst is synthesized by integrating palladium onto a magnetic CuFe₂O₄ support, which is functionalized with N,N-bis(2-pyridylmethyl)amine ethylamine (BPMAEA) as a ligand. This strategic design enhances palladium’s catalytic activity and stability while enabling easy separation and recovery of the catalyst from reaction mixtures. Comprehensive characterization techniques, including FT-IR, TEM, XRD, SEM, EDX, and VSM, confirm the successful synthesis of the Pd@CuFe₂O₄/BPMAEA nanoparticles, showcasing favorable structural and magnetic properties. The catalytic performance of the catalyst was assessed under various reaction conditions, demonstrating its remarkable efficiency in promoting both Suzuki and Sonogashira reactions with high yields and selectivity. Notably, the Pd@CuFe₂O₄/BPMAEA catalyst exhibits excellent reusability with minimal activity loss over multiple cycles, highlighting its potential for practical applications in organic synthesis. This research underscores the significance of developing sustainable catalytic systems that enhance reaction efficiency and minimize environmental impact using recoverable materials. Our findings contribute to advancing green chemistry practices in catalysis, paving the way for future innovations in sustainable organic transformations. The catalyst could easily and successfully be recycled up to six times with an E-factor as low as 29.48, a testament to its impressive efficiency and the potential it holds for the future of sustainable catalysis.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"50 5\",\"pages\":\"839 - 861\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-025-00662-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-025-00662-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Design and characterization of Pd@CuFe₂O₄/BPMAEA: a sustainable catalyst for cross-coupling reactions
This study identifies the novel palliated magnetic nanoparticles, Pd@CuFe₂O₄/BPMAEA, as an efficient and sustainable catalyst for Suzuki and Sonogashira cross-coupling reactions. The catalyst is synthesized by integrating palladium onto a magnetic CuFe₂O₄ support, which is functionalized with N,N-bis(2-pyridylmethyl)amine ethylamine (BPMAEA) as a ligand. This strategic design enhances palladium’s catalytic activity and stability while enabling easy separation and recovery of the catalyst from reaction mixtures. Comprehensive characterization techniques, including FT-IR, TEM, XRD, SEM, EDX, and VSM, confirm the successful synthesis of the Pd@CuFe₂O₄/BPMAEA nanoparticles, showcasing favorable structural and magnetic properties. The catalytic performance of the catalyst was assessed under various reaction conditions, demonstrating its remarkable efficiency in promoting both Suzuki and Sonogashira reactions with high yields and selectivity. Notably, the Pd@CuFe₂O₄/BPMAEA catalyst exhibits excellent reusability with minimal activity loss over multiple cycles, highlighting its potential for practical applications in organic synthesis. This research underscores the significance of developing sustainable catalytic systems that enhance reaction efficiency and minimize environmental impact using recoverable materials. Our findings contribute to advancing green chemistry practices in catalysis, paving the way for future innovations in sustainable organic transformations. The catalyst could easily and successfully be recycled up to six times with an E-factor as low as 29.48, a testament to its impressive efficiency and the potential it holds for the future of sustainable catalysis.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.