{"title":"心灵的微生物调节剂:益生菌干预海马神经发生和认知灵活性","authors":"Jianghua Zhao, Huiquan Liu, Bita Badehnoosh","doi":"10.1007/s10482-025-02162-0","DOIUrl":null,"url":null,"abstract":"<div><p>The gut-brain axis serves as a foundational communication channel between the intestinal microbiome and the brain, facilitating microbial impact on neural functions. Probiotics, defined as health-promoting live microorganisms, are being increasingly investigated for their regulatory effects on neuroplasticity and mental acuity. Recent evidence suggests that probiotics modulate hippocampal neurogenesis, a crucial process underlying learning, memory, and cognitive flexibility. Through the suppression of pro-inflammatory mechanisms, enhancement of neurotrophic factor biosynthesis, alleviation of oxidative burden, and stabilization of HPA axis function, probiotics contribute to sustaining hippocampal neural resilience and promoting synaptic adaptability. Evidence from both preclinical experiments and clinical evaluations suggests that strains like <i>Lactobacillus rhamnosus</i>, <i>Bifidobacterium longum</i>, and <i>Lactobacillus plantarum</i> may play a beneficial role in promoting adaptive cognitive functioning. These benefits are thought to be mediated via increased expression of brain-derived neurotrophic factor, modulation of microglial activation, and alteration of neurotransmitter metabolism including serotonin, dopamine, and GABA. This review synthesizes current findings on the molecular and cellular pathways through which probiotics support hippocampal neurogenesis and cognitive flexibility, and discusses their potential as a non-invasive, adjuvant strategy for cognitive enhancement in neurological disorders and age-related cognitive decline.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"118 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial modulators of the mind: probiotic interventions in hippocampal neurogenesis and cognitive flexibility\",\"authors\":\"Jianghua Zhao, Huiquan Liu, Bita Badehnoosh\",\"doi\":\"10.1007/s10482-025-02162-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The gut-brain axis serves as a foundational communication channel between the intestinal microbiome and the brain, facilitating microbial impact on neural functions. Probiotics, defined as health-promoting live microorganisms, are being increasingly investigated for their regulatory effects on neuroplasticity and mental acuity. Recent evidence suggests that probiotics modulate hippocampal neurogenesis, a crucial process underlying learning, memory, and cognitive flexibility. Through the suppression of pro-inflammatory mechanisms, enhancement of neurotrophic factor biosynthesis, alleviation of oxidative burden, and stabilization of HPA axis function, probiotics contribute to sustaining hippocampal neural resilience and promoting synaptic adaptability. Evidence from both preclinical experiments and clinical evaluations suggests that strains like <i>Lactobacillus rhamnosus</i>, <i>Bifidobacterium longum</i>, and <i>Lactobacillus plantarum</i> may play a beneficial role in promoting adaptive cognitive functioning. These benefits are thought to be mediated via increased expression of brain-derived neurotrophic factor, modulation of microglial activation, and alteration of neurotransmitter metabolism including serotonin, dopamine, and GABA. This review synthesizes current findings on the molecular and cellular pathways through which probiotics support hippocampal neurogenesis and cognitive flexibility, and discusses their potential as a non-invasive, adjuvant strategy for cognitive enhancement in neurological disorders and age-related cognitive decline.</p></div>\",\"PeriodicalId\":50746,\"journal\":{\"name\":\"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology\",\"volume\":\"118 10\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10482-025-02162-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10482-025-02162-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Microbial modulators of the mind: probiotic interventions in hippocampal neurogenesis and cognitive flexibility
The gut-brain axis serves as a foundational communication channel between the intestinal microbiome and the brain, facilitating microbial impact on neural functions. Probiotics, defined as health-promoting live microorganisms, are being increasingly investigated for their regulatory effects on neuroplasticity and mental acuity. Recent evidence suggests that probiotics modulate hippocampal neurogenesis, a crucial process underlying learning, memory, and cognitive flexibility. Through the suppression of pro-inflammatory mechanisms, enhancement of neurotrophic factor biosynthesis, alleviation of oxidative burden, and stabilization of HPA axis function, probiotics contribute to sustaining hippocampal neural resilience and promoting synaptic adaptability. Evidence from both preclinical experiments and clinical evaluations suggests that strains like Lactobacillus rhamnosus, Bifidobacterium longum, and Lactobacillus plantarum may play a beneficial role in promoting adaptive cognitive functioning. These benefits are thought to be mediated via increased expression of brain-derived neurotrophic factor, modulation of microglial activation, and alteration of neurotransmitter metabolism including serotonin, dopamine, and GABA. This review synthesizes current findings on the molecular and cellular pathways through which probiotics support hippocampal neurogenesis and cognitive flexibility, and discusses their potential as a non-invasive, adjuvant strategy for cognitive enhancement in neurological disorders and age-related cognitive decline.
期刊介绍:
Antonie van Leeuwenhoek publishes papers on fundamental and applied aspects of microbiology. Topics of particular interest include: taxonomy, structure & development; biochemistry & molecular biology; physiology & metabolic studies; genetics; ecological studies; especially molecular ecology; marine microbiology; medical microbiology; molecular biological aspects of microbial pathogenesis and bioinformatics.