生物质防腐用改性高硬度钢涂层

IF 5.5 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alina Agüero, Marcos Gutiérrez, Pauline Audigié, Sergio Rodríguez, Jon Pascual
{"title":"生物质防腐用改性高硬度钢涂层","authors":"Alina Agüero,&nbsp;Marcos Gutiérrez,&nbsp;Pauline Audigié,&nbsp;Sergio Rodríguez,&nbsp;Jon Pascual","doi":"10.1007/s40243-025-00330-w","DOIUrl":null,"url":null,"abstract":"<div><p>Biomass is a renewable and CO<sub>2</sub>-neutral energy source. However, the efficiency of biomass combustion plants remains lower than that of current fossil fuel-based systems. To minimize corrosion from aggressive species found in biomass combustion, these plants currently operate at a maximum temperature of 550 °C. The European project BELENUS explored new materials and coatings to raise the operating temperature to 600 °C, thereby improving plant efficiency. Among the coatings under investigation, a super high-hardness steel (SHS) modified with Al, applied by high velocity oxy-fuel (HVOF) thermal spray on ferritic steel SVM12, has demonstrated an improved performance in the laboratory, exposed to a model biomass environment containing KCl deposits for 8000 h at 600 °C. Microstructural analysis by field emission scanning electron microscopy (FESEM) and X-ray diffraction was conducted on the tested samples to examine the coating’s evolution in these environments, as well as the associated protection and degradation mechanisms. The presence of Al within the coating significantly enhanced its resistance to biomass corrosion when compared to uncoated SVM12 and the Al-free SHS coating. Possible reasons for the improved behaviour of the Al-modified coating are the reduction of porosity as well as the blocking effect of either intermetallic FeAl or Al oxide which forms at the splat boundaries prior to exposure to the corrosive atmosphere.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00330-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Modified high hardness steel coating for biomass corrosion protection\",\"authors\":\"Alina Agüero,&nbsp;Marcos Gutiérrez,&nbsp;Pauline Audigié,&nbsp;Sergio Rodríguez,&nbsp;Jon Pascual\",\"doi\":\"10.1007/s40243-025-00330-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biomass is a renewable and CO<sub>2</sub>-neutral energy source. However, the efficiency of biomass combustion plants remains lower than that of current fossil fuel-based systems. To minimize corrosion from aggressive species found in biomass combustion, these plants currently operate at a maximum temperature of 550 °C. The European project BELENUS explored new materials and coatings to raise the operating temperature to 600 °C, thereby improving plant efficiency. Among the coatings under investigation, a super high-hardness steel (SHS) modified with Al, applied by high velocity oxy-fuel (HVOF) thermal spray on ferritic steel SVM12, has demonstrated an improved performance in the laboratory, exposed to a model biomass environment containing KCl deposits for 8000 h at 600 °C. Microstructural analysis by field emission scanning electron microscopy (FESEM) and X-ray diffraction was conducted on the tested samples to examine the coating’s evolution in these environments, as well as the associated protection and degradation mechanisms. The presence of Al within the coating significantly enhanced its resistance to biomass corrosion when compared to uncoated SVM12 and the Al-free SHS coating. Possible reasons for the improved behaviour of the Al-modified coating are the reduction of porosity as well as the blocking effect of either intermetallic FeAl or Al oxide which forms at the splat boundaries prior to exposure to the corrosive atmosphere.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00330-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00330-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00330-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物质是一种可再生的二氧化碳中性能源。然而,生物质燃烧电厂的效率仍然低于目前基于化石燃料的系统。为了最大限度地减少生物质燃烧中腐蚀性物质的腐蚀,这些工厂目前在550°C的最高温度下运行。欧洲项目BELENUS探索了新的材料和涂层,将工作温度提高到600°C,从而提高了工厂效率。在研究的涂层中,通过高速氧燃料(HVOF)热喷涂将Al改性的超高硬度钢(SHS)涂在铁素体钢SVM12上,在实验室中,在含有KCl沉积物的模拟生物质环境中,在600°C下暴露8000小时,表现出了更好的性能。利用场发射扫描电镜(FESEM)和x射线衍射对测试样品进行微观结构分析,以研究涂层在这些环境中的演变,以及相关的保护和降解机制。与未涂覆的SVM12和不含Al的SHS涂层相比,涂层中Al的存在显著增强了其抗生物质腐蚀的能力。铝改性涂层性能改善的可能原因是孔隙率的降低以及金属间FeAl或Al氧化物在暴露于腐蚀性大气之前在片状边界形成的阻塞效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified high hardness steel coating for biomass corrosion protection

Biomass is a renewable and CO2-neutral energy source. However, the efficiency of biomass combustion plants remains lower than that of current fossil fuel-based systems. To minimize corrosion from aggressive species found in biomass combustion, these plants currently operate at a maximum temperature of 550 °C. The European project BELENUS explored new materials and coatings to raise the operating temperature to 600 °C, thereby improving plant efficiency. Among the coatings under investigation, a super high-hardness steel (SHS) modified with Al, applied by high velocity oxy-fuel (HVOF) thermal spray on ferritic steel SVM12, has demonstrated an improved performance in the laboratory, exposed to a model biomass environment containing KCl deposits for 8000 h at 600 °C. Microstructural analysis by field emission scanning electron microscopy (FESEM) and X-ray diffraction was conducted on the tested samples to examine the coating’s evolution in these environments, as well as the associated protection and degradation mechanisms. The presence of Al within the coating significantly enhanced its resistance to biomass corrosion when compared to uncoated SVM12 and the Al-free SHS coating. Possible reasons for the improved behaviour of the Al-modified coating are the reduction of porosity as well as the blocking effect of either intermetallic FeAl or Al oxide which forms at the splat boundaries prior to exposure to the corrosive atmosphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信