Mostafa R. Abukhadra, Ahmed M. El-Sherbeeny, Mehdi Tlija, Li Yan Zhang
{"title":"Fe3O4@SiO2-ABA-Amide/BTH-Cu(II)纳米复合材料作为可重复使用的磁性催化剂还原硝基芳烃和腈为胺","authors":"Mostafa R. Abukhadra, Ahmed M. El-Sherbeeny, Mehdi Tlija, Li Yan Zhang","doi":"10.1007/s11243-025-00645-7","DOIUrl":null,"url":null,"abstract":"<div><p>A novel nanomagnetic recoverable catalyst has been developed from a copper (II) complex supported on the surface of Fe<sub>3</sub>O<sub>4</sub> nanoparticles. In the initial step, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> was functionalized with 4-aminobenzoic acid, chosen for its safety, cost-effectiveness, and environmentally friendly properties as an amine source. This was then reacted with benzo[d]thiazole-2-carbonyl chloride to immobilize the desired benzothiazole structure, serving as a ligand for Cu(II). The resulting catalyst, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-ABA-Amide/BTH-Cu(II), was successfully synthesized and thoroughly characterized using a range of spectroscopic techniques, including FT-IR, SEM, TEM, EDX, TGA, XRD, VSM, and ICP-OES. This nanomagnetic copper catalyst exhibits high catalytic efficiency in the reduction of a broad library of nitro compounds to the desired amines. Using this eco-friendly catalytic system, a diverse range of aliphatic and aromatic amines was synthesized with good to excellent yields in a suitable time range. The Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-ABA-Amide/BTH-Cu(II) catalyst can be easily recovered using magnetic attraction and retains its effectiveness after being washed with an organic solvent and water. It demonstrated consistent performance across at least eight consecutive runs, highlighting its durability and efficiency. The ease of fabrication and straightforward process of magnetic separation are pivotal advantages of the current catalyst, making it highly effective for large-scale applications. One of its remarkable features is its excellent recyclability, which allows for up to eight repeated uses without significant loss in performance. Additionally, the catalyst demonstrates impressive yields of amine products, coupled with a high loading capacity of palladium onto the modified surface of magnetic nanoparticles. These characteristics collectively highlight the catalyst’s efficiency and practicality in various industrial applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"50 5","pages":"625 - 641"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Fe3O4@SiO2-ABA-Amide/BTH-Cu(II) nanocomposite as a reusable magnetic catalyst for reduction of nitroarenes and nitriles to amines\",\"authors\":\"Mostafa R. Abukhadra, Ahmed M. El-Sherbeeny, Mehdi Tlija, Li Yan Zhang\",\"doi\":\"10.1007/s11243-025-00645-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel nanomagnetic recoverable catalyst has been developed from a copper (II) complex supported on the surface of Fe<sub>3</sub>O<sub>4</sub> nanoparticles. In the initial step, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> was functionalized with 4-aminobenzoic acid, chosen for its safety, cost-effectiveness, and environmentally friendly properties as an amine source. This was then reacted with benzo[d]thiazole-2-carbonyl chloride to immobilize the desired benzothiazole structure, serving as a ligand for Cu(II). The resulting catalyst, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-ABA-Amide/BTH-Cu(II), was successfully synthesized and thoroughly characterized using a range of spectroscopic techniques, including FT-IR, SEM, TEM, EDX, TGA, XRD, VSM, and ICP-OES. This nanomagnetic copper catalyst exhibits high catalytic efficiency in the reduction of a broad library of nitro compounds to the desired amines. Using this eco-friendly catalytic system, a diverse range of aliphatic and aromatic amines was synthesized with good to excellent yields in a suitable time range. The Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-ABA-Amide/BTH-Cu(II) catalyst can be easily recovered using magnetic attraction and retains its effectiveness after being washed with an organic solvent and water. It demonstrated consistent performance across at least eight consecutive runs, highlighting its durability and efficiency. The ease of fabrication and straightforward process of magnetic separation are pivotal advantages of the current catalyst, making it highly effective for large-scale applications. One of its remarkable features is its excellent recyclability, which allows for up to eight repeated uses without significant loss in performance. Additionally, the catalyst demonstrates impressive yields of amine products, coupled with a high loading capacity of palladium onto the modified surface of magnetic nanoparticles. These characteristics collectively highlight the catalyst’s efficiency and practicality in various industrial applications.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"50 5\",\"pages\":\"625 - 641\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-025-00645-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-025-00645-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Construction of Fe3O4@SiO2-ABA-Amide/BTH-Cu(II) nanocomposite as a reusable magnetic catalyst for reduction of nitroarenes and nitriles to amines
A novel nanomagnetic recoverable catalyst has been developed from a copper (II) complex supported on the surface of Fe3O4 nanoparticles. In the initial step, Fe3O4@SiO2 was functionalized with 4-aminobenzoic acid, chosen for its safety, cost-effectiveness, and environmentally friendly properties as an amine source. This was then reacted with benzo[d]thiazole-2-carbonyl chloride to immobilize the desired benzothiazole structure, serving as a ligand for Cu(II). The resulting catalyst, Fe3O4@SiO2-ABA-Amide/BTH-Cu(II), was successfully synthesized and thoroughly characterized using a range of spectroscopic techniques, including FT-IR, SEM, TEM, EDX, TGA, XRD, VSM, and ICP-OES. This nanomagnetic copper catalyst exhibits high catalytic efficiency in the reduction of a broad library of nitro compounds to the desired amines. Using this eco-friendly catalytic system, a diverse range of aliphatic and aromatic amines was synthesized with good to excellent yields in a suitable time range. The Fe3O4@SiO2-ABA-Amide/BTH-Cu(II) catalyst can be easily recovered using magnetic attraction and retains its effectiveness after being washed with an organic solvent and water. It demonstrated consistent performance across at least eight consecutive runs, highlighting its durability and efficiency. The ease of fabrication and straightforward process of magnetic separation are pivotal advantages of the current catalyst, making it highly effective for large-scale applications. One of its remarkable features is its excellent recyclability, which allows for up to eight repeated uses without significant loss in performance. Additionally, the catalyst demonstrates impressive yields of amine products, coupled with a high loading capacity of palladium onto the modified surface of magnetic nanoparticles. These characteristics collectively highlight the catalyst’s efficiency and practicality in various industrial applications.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.