Xuan Xiang, Yuyin Mao, Minghui Zhang, Hanxiao Wang, Xiangdong Xue, Jian Tian, Jian Liu
{"title":"局部疏水性增强了NiCo2O4/CdS光催化剂上的析氢作用","authors":"Xuan Xiang, Yuyin Mao, Minghui Zhang, Hanxiao Wang, Xiangdong Xue, Jian Tian, Jian Liu","doi":"10.1007/s11705-025-2609-3","DOIUrl":null,"url":null,"abstract":"<div><p>Addressing electron and gas transfer dynamics is pivotal for photocatalytic hydrogen evolution. In this work, a hydrophilic NiCo<sub>2</sub>O<sub>4</sub>/CdS heterojunction was incorporated with hydrophobic SiO<sub>2</sub> to enhance photocatalytic hydrogen evolution performance. The hydrophilic/hydrophobic NiCo<sub>2</sub>O<sub>4</sub>/CdS/SiO<sub>2</sub> photocatalyst exhibited a hydrogen production rate of 11.78 mmol·g<sup>-1</sup>·h<sup>-1</sup>, outperforming the 8.15 mmol·g<sup>-1</sup>·h<sup>-1</sup> of NiCo<sub>2</sub>O<sub>4</sub>/CdS heterojunction. The heterojunction significantly enhances photogenerated charge-carrier separation efficiency, while the hydrophobic SiO<sub>2</sub> facilitates gas evolution by mitigating surface bubble aggregation. The work here provides a facile route for developing photocatalysts toward practical hydrogen evolution.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local hydrophobicity enhanced hydrogen evolution over NiCo2O4/CdS photocatalyst\",\"authors\":\"Xuan Xiang, Yuyin Mao, Minghui Zhang, Hanxiao Wang, Xiangdong Xue, Jian Tian, Jian Liu\",\"doi\":\"10.1007/s11705-025-2609-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Addressing electron and gas transfer dynamics is pivotal for photocatalytic hydrogen evolution. In this work, a hydrophilic NiCo<sub>2</sub>O<sub>4</sub>/CdS heterojunction was incorporated with hydrophobic SiO<sub>2</sub> to enhance photocatalytic hydrogen evolution performance. The hydrophilic/hydrophobic NiCo<sub>2</sub>O<sub>4</sub>/CdS/SiO<sub>2</sub> photocatalyst exhibited a hydrogen production rate of 11.78 mmol·g<sup>-1</sup>·h<sup>-1</sup>, outperforming the 8.15 mmol·g<sup>-1</sup>·h<sup>-1</sup> of NiCo<sub>2</sub>O<sub>4</sub>/CdS heterojunction. The heterojunction significantly enhances photogenerated charge-carrier separation efficiency, while the hydrophobic SiO<sub>2</sub> facilitates gas evolution by mitigating surface bubble aggregation. The work here provides a facile route for developing photocatalysts toward practical hydrogen evolution.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2609-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2609-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Local hydrophobicity enhanced hydrogen evolution over NiCo2O4/CdS photocatalyst
Addressing electron and gas transfer dynamics is pivotal for photocatalytic hydrogen evolution. In this work, a hydrophilic NiCo2O4/CdS heterojunction was incorporated with hydrophobic SiO2 to enhance photocatalytic hydrogen evolution performance. The hydrophilic/hydrophobic NiCo2O4/CdS/SiO2 photocatalyst exhibited a hydrogen production rate of 11.78 mmol·g-1·h-1, outperforming the 8.15 mmol·g-1·h-1 of NiCo2O4/CdS heterojunction. The heterojunction significantly enhances photogenerated charge-carrier separation efficiency, while the hydrophobic SiO2 facilitates gas evolution by mitigating surface bubble aggregation. The work here provides a facile route for developing photocatalysts toward practical hydrogen evolution.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.