i掺杂BiOCl增强TiO2纳米管阵列光催化CO2甲烷化活性

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Jun Deng, Xin-Er Tang, Jiajun Du, Chang-An Zhou, Lin Xia, Xuemei Zhou
{"title":"i掺杂BiOCl增强TiO2纳米管阵列光催化CO2甲烷化活性","authors":"Jun Deng,&nbsp;Xin-Er Tang,&nbsp;Jiajun Du,&nbsp;Chang-An Zhou,&nbsp;Lin Xia,&nbsp;Xuemei Zhou","doi":"10.1007/s10562-025-05165-8","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic CO<sub>2</sub> methanation provides a sustainable approach for massive CO<sub>2</sub> conversion, where the protonation of carbon intermediates and electron transfer (eight electrons and four protons required from CO<sub>2</sub> to CH<sub>4</sub>) kinetics are essential. In this work, I-doped BiOCl on TiO<sub>2</sub> nanotube arrays (BiOCl-I/TNTs) are prepared, which gives a methane production rate of 2.8 × 10<sup>−3</sup> µmol·cm<sup>−2</sup>·h<sup>−1</sup>, that is nearly 5 times higher than TiO<sub>2</sub> (5.5 × 10<sup>−4</sup> µmol·cm<sup>−2</sup>·h<sup>−1</sup>). The selectivity towards methane production is 84.4% for BiOCl-I/TNTs, competing with hydrogen evolution reaction, showing nearly twice the increase compared to TiO<sub>2</sub>. The enhancement on the activity and selectivity is ascribed to high solar light absorption, and excited energetic band of I-BiOCl (-1.75 eV vs. NHE) that offers high reductive potential of electrons for CO<sub>2</sub> activation and reduction thermodynamically. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) analysis demonstrates a Mixed pathway for methanation is favored on I-BiOCl with *COOH as activated states of CO<sub>2</sub>, where the reaction barrier is lower compared to conversion of CO<sub>2</sub> to bidentate adsorbed CO<sub>2</sub> (b-CO<sub>3</sub><sup>2−</sup>) or monodentate adsorbed CO<sub>2</sub> (m-CO<sub>3</sub><sup>2−</sup>) on bare TiO<sub>2</sub>, that can be stemmed from the water dissociation and oxidation ability of I-BiOCl, providing high density of protons to react with carbon intermediates. This work thus provides new insights on the methanation of CO<sub>2</sub> using BiOX heterojunctions.</p><h3>Graphical Abstract</h3><p>I-BiOCl/TNTs significantly enhances CO<sub>2</sub> methanation activity by high solar light absorption and excited virtual states under illumination that offers high reductive potential of electrons for CO<sub>2</sub> activation. The lowered energy barrier for CO<sub>2</sub> reduction pathway via *COOH intermediates, leading to high CH<sub>4</sub> selectivity and yield.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"I-doped BiOCl Boosting Photocatalytic CO2 Methanation Activity of TiO2 Nanotube Arrays\",\"authors\":\"Jun Deng,&nbsp;Xin-Er Tang,&nbsp;Jiajun Du,&nbsp;Chang-An Zhou,&nbsp;Lin Xia,&nbsp;Xuemei Zhou\",\"doi\":\"10.1007/s10562-025-05165-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photocatalytic CO<sub>2</sub> methanation provides a sustainable approach for massive CO<sub>2</sub> conversion, where the protonation of carbon intermediates and electron transfer (eight electrons and four protons required from CO<sub>2</sub> to CH<sub>4</sub>) kinetics are essential. In this work, I-doped BiOCl on TiO<sub>2</sub> nanotube arrays (BiOCl-I/TNTs) are prepared, which gives a methane production rate of 2.8 × 10<sup>−3</sup> µmol·cm<sup>−2</sup>·h<sup>−1</sup>, that is nearly 5 times higher than TiO<sub>2</sub> (5.5 × 10<sup>−4</sup> µmol·cm<sup>−2</sup>·h<sup>−1</sup>). The selectivity towards methane production is 84.4% for BiOCl-I/TNTs, competing with hydrogen evolution reaction, showing nearly twice the increase compared to TiO<sub>2</sub>. The enhancement on the activity and selectivity is ascribed to high solar light absorption, and excited energetic band of I-BiOCl (-1.75 eV vs. NHE) that offers high reductive potential of electrons for CO<sub>2</sub> activation and reduction thermodynamically. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) analysis demonstrates a Mixed pathway for methanation is favored on I-BiOCl with *COOH as activated states of CO<sub>2</sub>, where the reaction barrier is lower compared to conversion of CO<sub>2</sub> to bidentate adsorbed CO<sub>2</sub> (b-CO<sub>3</sub><sup>2−</sup>) or monodentate adsorbed CO<sub>2</sub> (m-CO<sub>3</sub><sup>2−</sup>) on bare TiO<sub>2</sub>, that can be stemmed from the water dissociation and oxidation ability of I-BiOCl, providing high density of protons to react with carbon intermediates. This work thus provides new insights on the methanation of CO<sub>2</sub> using BiOX heterojunctions.</p><h3>Graphical Abstract</h3><p>I-BiOCl/TNTs significantly enhances CO<sub>2</sub> methanation activity by high solar light absorption and excited virtual states under illumination that offers high reductive potential of electrons for CO<sub>2</sub> activation. The lowered energy barrier for CO<sub>2</sub> reduction pathway via *COOH intermediates, leading to high CH<sub>4</sub> selectivity and yield.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":\"155 10\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10562-025-05165-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-05165-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化CO2甲烷化为大规模CO2转化提供了一种可持续的方法,其中碳中间体的质子化和电子转移(从CO2到CH4需要8个电子和4个质子)动力学是必不可少的。在这项工作中,在TiO2纳米管阵列(BiOCl- i /TNTs)上制备了i掺杂BiOCl,其甲烷产率为2.8 × 10−3µmol·cm−2·h−1,是TiO2 (5.5 × 10−4µmol·cm−2·h−1)的近5倍。BiOCl-I/ tnt的甲烷选择性为84.4%,与析氢反应竞争,比TiO2提高了近两倍。活性和选择性的增强是由于I-BiOCl的高太阳光吸收和激发能带(-1.75 eV vs. NHE),为CO2的活化和热力学还原提供了高的电子还原势。红外傅里叶变换光谱(DRIFTS)分析表明,在以*COOH为CO2活化态的I-BiOCl上,甲烷化的混合途径更有利,与在裸TiO2上将CO2转化为双齿吸附的CO2 (b-CO32−)或单齿吸附的CO2 (m-CO32−)相比,反应屏障更低,这可能源于I-BiOCl的水解离和氧化能力,提供了高密度的质子与碳中间体反应。因此,这项工作为利用BiOX异质结进行二氧化碳甲烷化提供了新的见解。图形摘要:biocl / tnt通过在光照下高的太阳能光吸收和激发虚态,为二氧化碳活化提供了高的电子还原电位,显著提高了二氧化碳甲烷化活性。通过*COOH中间体降低CO2还原途径的能垒,从而提高CH4的选择性和产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
I-doped BiOCl Boosting Photocatalytic CO2 Methanation Activity of TiO2 Nanotube Arrays

Photocatalytic CO2 methanation provides a sustainable approach for massive CO2 conversion, where the protonation of carbon intermediates and electron transfer (eight electrons and four protons required from CO2 to CH4) kinetics are essential. In this work, I-doped BiOCl on TiO2 nanotube arrays (BiOCl-I/TNTs) are prepared, which gives a methane production rate of 2.8 × 10−3 µmol·cm−2·h−1, that is nearly 5 times higher than TiO2 (5.5 × 10−4 µmol·cm−2·h−1). The selectivity towards methane production is 84.4% for BiOCl-I/TNTs, competing with hydrogen evolution reaction, showing nearly twice the increase compared to TiO2. The enhancement on the activity and selectivity is ascribed to high solar light absorption, and excited energetic band of I-BiOCl (-1.75 eV vs. NHE) that offers high reductive potential of electrons for CO2 activation and reduction thermodynamically. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) analysis demonstrates a Mixed pathway for methanation is favored on I-BiOCl with *COOH as activated states of CO2, where the reaction barrier is lower compared to conversion of CO2 to bidentate adsorbed CO2 (b-CO32−) or monodentate adsorbed CO2 (m-CO32−) on bare TiO2, that can be stemmed from the water dissociation and oxidation ability of I-BiOCl, providing high density of protons to react with carbon intermediates. This work thus provides new insights on the methanation of CO2 using BiOX heterojunctions.

Graphical Abstract

I-BiOCl/TNTs significantly enhances CO2 methanation activity by high solar light absorption and excited virtual states under illumination that offers high reductive potential of electrons for CO2 activation. The lowered energy barrier for CO2 reduction pathway via *COOH intermediates, leading to high CH4 selectivity and yield.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信