高温退火对石墨烯摩擦性能的影响

IF 3.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Wenjie He, Yu Zhang, Qiang He, Wen Wang
{"title":"高温退火对石墨烯摩擦性能的影响","authors":"Wenjie He,&nbsp;Yu Zhang,&nbsp;Qiang He,&nbsp;Wen Wang","doi":"10.1007/s11249-025-02065-1","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the high surface-to-volume ratio, micro/nano-electromechanical systems (MEMS/NEMS) undergo severe wear during the relative sliding. Graphene, possessing excellent mechanical, physical, and chemical properties, can achieve an ultralow friction and wear state, making it highly promising for significantly minimizing friction and wear in MEMS/NEMS. However, graphene films used in MEMS/NEMS are typically subjected to thermal annealing pretreatment during the fabrication process. To maintain optimal performance, it is particularly necessary to investigate the evolution of graphene tribological properties after high-temperature annealing. In this article, by performing nanoscale atomic force microscopy (AFM) measurements on mechanically exfoliated graphene, we reveal that the friction force on graphene decreases slightly upon annealing to approximately 200 °C, then gradually increases before rising rapidly once the annealing temperature exceeds 500 °C. Raman spectroscopy identifies that the changes in friction result from the annealing-induced compressive stress accumulation and defects creation. Our results provide deep insights for the application of graphene in sliding MEMS/NEMS.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of High-Temperature Annealing on the Frictional Properties of Graphene\",\"authors\":\"Wenjie He,&nbsp;Yu Zhang,&nbsp;Qiang He,&nbsp;Wen Wang\",\"doi\":\"10.1007/s11249-025-02065-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the high surface-to-volume ratio, micro/nano-electromechanical systems (MEMS/NEMS) undergo severe wear during the relative sliding. Graphene, possessing excellent mechanical, physical, and chemical properties, can achieve an ultralow friction and wear state, making it highly promising for significantly minimizing friction and wear in MEMS/NEMS. However, graphene films used in MEMS/NEMS are typically subjected to thermal annealing pretreatment during the fabrication process. To maintain optimal performance, it is particularly necessary to investigate the evolution of graphene tribological properties after high-temperature annealing. In this article, by performing nanoscale atomic force microscopy (AFM) measurements on mechanically exfoliated graphene, we reveal that the friction force on graphene decreases slightly upon annealing to approximately 200 °C, then gradually increases before rising rapidly once the annealing temperature exceeds 500 °C. Raman spectroscopy identifies that the changes in friction result from the annealing-induced compressive stress accumulation and defects creation. Our results provide deep insights for the application of graphene in sliding MEMS/NEMS.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":\"73 4\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-025-02065-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-025-02065-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于高表面体积比,微/纳米机电系统(MEMS/NEMS)在相对滑动过程中会遭受严重的磨损。石墨烯具有优异的机械、物理和化学性能,可以实现超低摩擦和磨损状态,在MEMS/NEMS中具有极大的应用前景。然而,用于MEMS/NEMS的石墨烯薄膜通常在制造过程中进行热退火预处理。为了保持最佳性能,研究石墨烯高温退火后摩擦学性能的演变尤为必要。在本文中,通过对机械剥离的石墨烯进行纳米尺度原子力显微镜(AFM)测量,我们发现石墨烯上的摩擦力在退火至约200℃时略有下降,然后逐渐增加,一旦退火温度超过500℃时迅速上升。拉曼光谱分析表明,摩擦的变化是由退火引起的压应力积累和缺陷产生引起的。我们的研究结果为石墨烯在滑动MEMS/NEMS中的应用提供了深刻的见解。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of High-Temperature Annealing on the Frictional Properties of Graphene

Due to the high surface-to-volume ratio, micro/nano-electromechanical systems (MEMS/NEMS) undergo severe wear during the relative sliding. Graphene, possessing excellent mechanical, physical, and chemical properties, can achieve an ultralow friction and wear state, making it highly promising for significantly minimizing friction and wear in MEMS/NEMS. However, graphene films used in MEMS/NEMS are typically subjected to thermal annealing pretreatment during the fabrication process. To maintain optimal performance, it is particularly necessary to investigate the evolution of graphene tribological properties after high-temperature annealing. In this article, by performing nanoscale atomic force microscopy (AFM) measurements on mechanically exfoliated graphene, we reveal that the friction force on graphene decreases slightly upon annealing to approximately 200 °C, then gradually increases before rising rapidly once the annealing temperature exceeds 500 °C. Raman spectroscopy identifies that the changes in friction result from the annealing-induced compressive stress accumulation and defects creation. Our results provide deep insights for the application of graphene in sliding MEMS/NEMS.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信