{"title":"基于二维CNN和波形变换的低信噪比声发射信号到达时间提取","authors":"Runtu Chen, Chi Xu, Feng Li, Zhensheng Yang","doi":"10.1007/s10921-025-01271-0","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately picking acoustic emission (AE) arrival times remains a significant challenge, particularly for low signal-to-noise ratio (SNR) signals where manual picking is subjective and unreliable. This article introduces an improved manual picking method for AE arrival times, developed by integrating sensor acquisition principles with wave velocity attenuation laws. This method provides a derivation formula that enables the determination of “ground truth” arrival times for low SNR signals by leveraging characteristics from high SNR signals. These derived values serve as labels to train a two-dimensional convolutional neural network (2D CNN) for automated arrival time picking. A key innovation is converting the one-dimensional AE signal directly into a two-dimensional matrix using a transformation matrix as the CNN’s input, thereby significantly streamlining preprocessing by eliminating the need for additional feature extraction. The labeled 2D matrices are then fed into the 2D CNN for training to enhance its ability to recognize crucial temporal patterns. Finally, the AIC algorithm picks the arrival times picked from the CNN-processed signals. A major advantage of CNNs in this context is that it does not require additional feature extraction and can extract features from the original elements. In addition, it can identify high-order statistics and nonlinear correlations of images. The third convolutional neuron can process data in its receptive domain or restricted subregion, reducing the need for a large number of neurons with large input sizes and enabling the network to be trained more deeply with fewer parameters. Results demonstrate that the proposed method significantly outperforms mainstream detection methods, including AIC and Floating Threshold (FT), achieving high accuracy and stability, particularly in scenarios with limited data and low SNR.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Arrival Time Picking for Acoustic Emission Signals Via 2D CNN and Waveform Transformation in Low-SNR Environments\",\"authors\":\"Runtu Chen, Chi Xu, Feng Li, Zhensheng Yang\",\"doi\":\"10.1007/s10921-025-01271-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurately picking acoustic emission (AE) arrival times remains a significant challenge, particularly for low signal-to-noise ratio (SNR) signals where manual picking is subjective and unreliable. This article introduces an improved manual picking method for AE arrival times, developed by integrating sensor acquisition principles with wave velocity attenuation laws. This method provides a derivation formula that enables the determination of “ground truth” arrival times for low SNR signals by leveraging characteristics from high SNR signals. These derived values serve as labels to train a two-dimensional convolutional neural network (2D CNN) for automated arrival time picking. A key innovation is converting the one-dimensional AE signal directly into a two-dimensional matrix using a transformation matrix as the CNN’s input, thereby significantly streamlining preprocessing by eliminating the need for additional feature extraction. The labeled 2D matrices are then fed into the 2D CNN for training to enhance its ability to recognize crucial temporal patterns. Finally, the AIC algorithm picks the arrival times picked from the CNN-processed signals. A major advantage of CNNs in this context is that it does not require additional feature extraction and can extract features from the original elements. In addition, it can identify high-order statistics and nonlinear correlations of images. The third convolutional neuron can process data in its receptive domain or restricted subregion, reducing the need for a large number of neurons with large input sizes and enabling the network to be trained more deeply with fewer parameters. Results demonstrate that the proposed method significantly outperforms mainstream detection methods, including AIC and Floating Threshold (FT), achieving high accuracy and stability, particularly in scenarios with limited data and low SNR.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-025-01271-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01271-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Enhanced Arrival Time Picking for Acoustic Emission Signals Via 2D CNN and Waveform Transformation in Low-SNR Environments
Accurately picking acoustic emission (AE) arrival times remains a significant challenge, particularly for low signal-to-noise ratio (SNR) signals where manual picking is subjective and unreliable. This article introduces an improved manual picking method for AE arrival times, developed by integrating sensor acquisition principles with wave velocity attenuation laws. This method provides a derivation formula that enables the determination of “ground truth” arrival times for low SNR signals by leveraging characteristics from high SNR signals. These derived values serve as labels to train a two-dimensional convolutional neural network (2D CNN) for automated arrival time picking. A key innovation is converting the one-dimensional AE signal directly into a two-dimensional matrix using a transformation matrix as the CNN’s input, thereby significantly streamlining preprocessing by eliminating the need for additional feature extraction. The labeled 2D matrices are then fed into the 2D CNN for training to enhance its ability to recognize crucial temporal patterns. Finally, the AIC algorithm picks the arrival times picked from the CNN-processed signals. A major advantage of CNNs in this context is that it does not require additional feature extraction and can extract features from the original elements. In addition, it can identify high-order statistics and nonlinear correlations of images. The third convolutional neuron can process data in its receptive domain or restricted subregion, reducing the need for a large number of neurons with large input sizes and enabling the network to be trained more deeply with fewer parameters. Results demonstrate that the proposed method significantly outperforms mainstream detection methods, including AIC and Floating Threshold (FT), achieving high accuracy and stability, particularly in scenarios with limited data and low SNR.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.