基于鲁棒损失函数的GNSS离群值自动农用车鲁棒运动地平线估计

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Nestor N. Deniz;Guido M. Sanchez;Fernando A. Auat Cheein;Leonardo L. Giovanini
{"title":"基于鲁棒损失函数的GNSS离群值自动农用车鲁棒运动地平线估计","authors":"Nestor N. Deniz;Guido M. Sanchez;Fernando A. Auat Cheein;Leonardo L. Giovanini","doi":"10.1109/LRA.2025.3606377","DOIUrl":null,"url":null,"abstract":"We propose a Moving Horizon Estimator (MHE) for autonomous agricultural vehicles to handle GNSS outliers, a common issue in farming. To improve robustness, we replace the standard <inline-formula><tex-math>$\\mathrm{L_{2}}$</tex-math></inline-formula> stage cost with a loss function based on the square of the derivative of the General Adaptive Robust Loss (GARL). The GARL framework, controlled by parameters <inline-formula><tex-math>$\\alpha \\in [1,\\,2)$</tex-math></inline-formula> and <inline-formula><tex-math>$c &gt; 0$</tex-math></inline-formula>, balances between quadratic and outlier-resistant behavior. By using the derivative, we avoid singularities at <inline-formula><tex-math>$\\alpha = 0$</tex-math></inline-formula> and <inline-formula><tex-math>$\\alpha = 2$</tex-math></inline-formula>, simplifying tuning and ensuring stable optimization within MHE. This approach retains the flexibility of GARL while narrowing the design space to a singularity-free regime. We prove robust stability under standard assumptions. Simulations show our method outperforms <inline-formula><tex-math>$\\mathrm{L_{2}}$</tex-math></inline-formula>-based MHE and state-of-the-art methods, rejecting GNSS outliers. Field experiments validate its practical effectiveness.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 10","pages":"10815-10821"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Moving Horizon Estimation for Autonomous Agricultural Vehicles With GNSS Outliers Using a Robust Loss Function\",\"authors\":\"Nestor N. Deniz;Guido M. Sanchez;Fernando A. Auat Cheein;Leonardo L. Giovanini\",\"doi\":\"10.1109/LRA.2025.3606377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Moving Horizon Estimator (MHE) for autonomous agricultural vehicles to handle GNSS outliers, a common issue in farming. To improve robustness, we replace the standard <inline-formula><tex-math>$\\\\mathrm{L_{2}}$</tex-math></inline-formula> stage cost with a loss function based on the square of the derivative of the General Adaptive Robust Loss (GARL). The GARL framework, controlled by parameters <inline-formula><tex-math>$\\\\alpha \\\\in [1,\\\\,2)$</tex-math></inline-formula> and <inline-formula><tex-math>$c &gt; 0$</tex-math></inline-formula>, balances between quadratic and outlier-resistant behavior. By using the derivative, we avoid singularities at <inline-formula><tex-math>$\\\\alpha = 0$</tex-math></inline-formula> and <inline-formula><tex-math>$\\\\alpha = 2$</tex-math></inline-formula>, simplifying tuning and ensuring stable optimization within MHE. This approach retains the flexibility of GARL while narrowing the design space to a singularity-free regime. We prove robust stability under standard assumptions. Simulations show our method outperforms <inline-formula><tex-math>$\\\\mathrm{L_{2}}$</tex-math></inline-formula>-based MHE and state-of-the-art methods, rejecting GNSS outliers. Field experiments validate its practical effectiveness.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 10\",\"pages\":\"10815-10821\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11150691/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11150691/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种移动地平线估计器(MHE),用于自动农用车辆处理GNSS异常值,这是农业中常见的问题。为了提高鲁棒性,我们将标准的$\ mathm {L_{2}}$阶段代价替换为基于一般自适应鲁棒损失(General Adaptive Robust loss, GARL)导数平方的损失函数。GARL框架由参数$\alpha \in[1,\,2)$和$c > 0$控制,在二次型和抗离群值行为之间取得平衡。通过使用导数,我们避免了$\alpha = 0$和$\alpha = 2$处的奇异性,简化了调整并确保了MHE内的稳定优化。这种方法保留了GARL的灵活性,同时将设计空间缩小到无奇点的状态。在标准假设下证明了鲁棒稳定性。仿真表明,我们的方法优于基于$\ mathm {L_{2}}$的MHE和最先进的方法,可以拒绝GNSS异常值。现场实验验证了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Moving Horizon Estimation for Autonomous Agricultural Vehicles With GNSS Outliers Using a Robust Loss Function
We propose a Moving Horizon Estimator (MHE) for autonomous agricultural vehicles to handle GNSS outliers, a common issue in farming. To improve robustness, we replace the standard $\mathrm{L_{2}}$ stage cost with a loss function based on the square of the derivative of the General Adaptive Robust Loss (GARL). The GARL framework, controlled by parameters $\alpha \in [1,\,2)$ and $c > 0$, balances between quadratic and outlier-resistant behavior. By using the derivative, we avoid singularities at $\alpha = 0$ and $\alpha = 2$, simplifying tuning and ensuring stable optimization within MHE. This approach retains the flexibility of GARL while narrowing the design space to a singularity-free regime. We prove robust stability under standard assumptions. Simulations show our method outperforms $\mathrm{L_{2}}$-based MHE and state-of-the-art methods, rejecting GNSS outliers. Field experiments validate its practical effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信