生物电模式在调节形态发生中的作用:涡虫再生的进化模拟和验证

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Sammy Hansali;Léo Pio-Lopez;Jennifer V. Lapalme;Michael Levin
{"title":"生物电模式在调节形态发生中的作用:涡虫再生的进化模拟和验证","authors":"Sammy Hansali;Léo Pio-Lopez;Jennifer V. Lapalme;Michael Levin","doi":"10.1109/TMBMC.2025.3575233","DOIUrl":null,"url":null,"abstract":"Endogenous bioelectrical patterns are an important regulator of anatomical pattern during embryogenesis, regeneration, and cancer. While there are three known classes of instructive bioelectric patterns: directly encoding, indirectly encoding, and binary trigger, it is not known how these design principles could be exploited by evolution and what their relative advantages might be. To better understand the evolutionary role of bioelectricity in anatomical homeostasis, we developed a neural cellular automaton (NCA). We used evolutionary algorithms to optimize these models to achieve reliable morphogenetic patterns driven by the different ways in which tissues can interpret their bioelectrical pattern for downstream anatomical outcomes. We found that: (1) All three types of bioelectrical codes allow the reaching of target morphologies; (2) Resetting of the bioelectrical pattern and the change in duration of the binary trigger alter morphogenesis; (3) Direct pattern organisms show an emergent robustness to changes in initial anatomical configurations; (4) Indirect pattern organisms show an emergent robustness to bioelectrical perturbation; (5) Direct and indirect pattern organisms show a emergent generalizability competency to new (rotated) bioelectrical patterns; (6) Direct pattern organisms show an emergent repatterning competency in post-developmental-phase. Because our simulation was fundamentally a homeostatic system seeking to achieve specific goals in anatomical state space (the space of possible morphologies), we sought to determine how the system would react when we abrogated the incentive loop driving anatomical homeostasis. To abrogate the stress/reward system that drives error minimization, we used anxiolytic neuromodulators. Simulating the effects of selective serotonin reuptake inhibitors diminished the ability of artificial embryos to reduce error between anatomical state and bioelectric prepattern, leading to higher variance of developmental outcomes, global morphological degradation, and induced in some organisms a bistability with respect to possible anatomical outcomes. These computational findings were validated by data collected from in vivo experiments in SSRI exposure in planarian flatworm regeneration.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"305-331"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11018651","citationCount":"0","resultStr":"{\"title\":\"The Role of Bioelectrical Patterns in Regulative Morphogenesis: An Evolutionary Simulation and Validation in Planarian Regeneration\",\"authors\":\"Sammy Hansali;Léo Pio-Lopez;Jennifer V. Lapalme;Michael Levin\",\"doi\":\"10.1109/TMBMC.2025.3575233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endogenous bioelectrical patterns are an important regulator of anatomical pattern during embryogenesis, regeneration, and cancer. While there are three known classes of instructive bioelectric patterns: directly encoding, indirectly encoding, and binary trigger, it is not known how these design principles could be exploited by evolution and what their relative advantages might be. To better understand the evolutionary role of bioelectricity in anatomical homeostasis, we developed a neural cellular automaton (NCA). We used evolutionary algorithms to optimize these models to achieve reliable morphogenetic patterns driven by the different ways in which tissues can interpret their bioelectrical pattern for downstream anatomical outcomes. We found that: (1) All three types of bioelectrical codes allow the reaching of target morphologies; (2) Resetting of the bioelectrical pattern and the change in duration of the binary trigger alter morphogenesis; (3) Direct pattern organisms show an emergent robustness to changes in initial anatomical configurations; (4) Indirect pattern organisms show an emergent robustness to bioelectrical perturbation; (5) Direct and indirect pattern organisms show a emergent generalizability competency to new (rotated) bioelectrical patterns; (6) Direct pattern organisms show an emergent repatterning competency in post-developmental-phase. Because our simulation was fundamentally a homeostatic system seeking to achieve specific goals in anatomical state space (the space of possible morphologies), we sought to determine how the system would react when we abrogated the incentive loop driving anatomical homeostasis. To abrogate the stress/reward system that drives error minimization, we used anxiolytic neuromodulators. Simulating the effects of selective serotonin reuptake inhibitors diminished the ability of artificial embryos to reduce error between anatomical state and bioelectric prepattern, leading to higher variance of developmental outcomes, global morphological degradation, and induced in some organisms a bistability with respect to possible anatomical outcomes. These computational findings were validated by data collected from in vivo experiments in SSRI exposure in planarian flatworm regeneration.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"11 3\",\"pages\":\"305-331\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11018651\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11018651/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11018651/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

内源性生物电模式是胚胎发生、再生和癌变过程中解剖模式的重要调节因子。虽然有三种已知的指导性生物电模式:直接编码、间接编码和二进制触发,但尚不清楚这些设计原则如何被进化所利用,以及它们的相对优势是什么。为了更好地理解生物电在解剖稳态中的进化作用,我们开发了一个神经细胞自动机(NCA)。我们使用进化算法来优化这些模型,以获得可靠的形态发生模式,这些模式是由不同的组织方式驱动的,这些组织可以通过不同的方式来解释其生物电模式,从而获得下游解剖结果。我们发现:(1)所有三种类型的生物电编码都允许到达目标形态;(2)生物电模式的重置和二元触发持续时间的改变改变了形态发生;(3)直接模式生物对初始解剖结构的变化表现出紧急鲁棒性;(4)间接模式生物对生物电扰动表现出紧急鲁棒性;(5)直接模式和间接模式生物对新的(旋转的)生物电模式表现出一种新兴的一般化能力;(6)直接模式生物在发育后期表现出突发性的模式重组能力。由于我们的模拟基本上是一个寻求在解剖状态空间(可能的形态空间)中实现特定目标的稳态系统,因此我们试图确定当我们取消驱动解剖稳态的激励循环时系统将如何反应。为了消除导致错误最小化的压力/奖励系统,我们使用了抗焦虑神经调节剂。模拟选择性5 -羟色胺再摄取抑制剂的作用,降低了人工胚胎减少解剖状态和生物电预模式之间误差的能力,导致发育结果的更高差异,整体形态退化,并在某些生物体中诱导了可能解剖结果的双稳定性。这些计算结果通过在涡虫再生中暴露SSRI的体内实验收集的数据得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of Bioelectrical Patterns in Regulative Morphogenesis: An Evolutionary Simulation and Validation in Planarian Regeneration
Endogenous bioelectrical patterns are an important regulator of anatomical pattern during embryogenesis, regeneration, and cancer. While there are three known classes of instructive bioelectric patterns: directly encoding, indirectly encoding, and binary trigger, it is not known how these design principles could be exploited by evolution and what their relative advantages might be. To better understand the evolutionary role of bioelectricity in anatomical homeostasis, we developed a neural cellular automaton (NCA). We used evolutionary algorithms to optimize these models to achieve reliable morphogenetic patterns driven by the different ways in which tissues can interpret their bioelectrical pattern for downstream anatomical outcomes. We found that: (1) All three types of bioelectrical codes allow the reaching of target morphologies; (2) Resetting of the bioelectrical pattern and the change in duration of the binary trigger alter morphogenesis; (3) Direct pattern organisms show an emergent robustness to changes in initial anatomical configurations; (4) Indirect pattern organisms show an emergent robustness to bioelectrical perturbation; (5) Direct and indirect pattern organisms show a emergent generalizability competency to new (rotated) bioelectrical patterns; (6) Direct pattern organisms show an emergent repatterning competency in post-developmental-phase. Because our simulation was fundamentally a homeostatic system seeking to achieve specific goals in anatomical state space (the space of possible morphologies), we sought to determine how the system would react when we abrogated the incentive loop driving anatomical homeostasis. To abrogate the stress/reward system that drives error minimization, we used anxiolytic neuromodulators. Simulating the effects of selective serotonin reuptake inhibitors diminished the ability of artificial embryos to reduce error between anatomical state and bioelectric prepattern, leading to higher variance of developmental outcomes, global morphological degradation, and induced in some organisms a bistability with respect to possible anatomical outcomes. These computational findings were validated by data collected from in vivo experiments in SSRI exposure in planarian flatworm regeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信