基于知识的双向递归神经网络方法有效预测CMOS逆变器链中的抖动

IF 1.5 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ahsan Javaid;Ramachandra Achar;Jai Narayan Tripathi
{"title":"基于知识的双向递归神经网络方法有效预测CMOS逆变器链中的抖动","authors":"Ahsan Javaid;Ramachandra Achar;Jai Narayan Tripathi","doi":"10.1109/JMMCT.2025.3602632","DOIUrl":null,"url":null,"abstract":"An efficient hybrid approach based on combining the bidirectional recurrent neural network with knowledge-based neural network is presented to predict jitter in a chain of CMOS inverters in the presence of multiple noise sources. The new method achieves a reasonable accuracy and provides for efficient training using input data obtained from both a circuit simulator as well as analytical relations. The proposed approach can also estimate jitter for each inverter in the chain by only employing the accurate training data associated with the first inverter, resulting in a significant increase in speed compared to conventional approaches.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"407-420"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge-Based Bidirectional Recurrent Neural Network Approach for Efficient Prediction of Jitter in a Chain of CMOS Inverters\",\"authors\":\"Ahsan Javaid;Ramachandra Achar;Jai Narayan Tripathi\",\"doi\":\"10.1109/JMMCT.2025.3602632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient hybrid approach based on combining the bidirectional recurrent neural network with knowledge-based neural network is presented to predict jitter in a chain of CMOS inverters in the presence of multiple noise sources. The new method achieves a reasonable accuracy and provides for efficient training using input data obtained from both a circuit simulator as well as analytical relations. The proposed approach can also estimate jitter for each inverter in the chain by only employing the accurate training data associated with the first inverter, resulting in a significant increase in speed compared to conventional approaches.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"10 \",\"pages\":\"407-420\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11141018/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11141018/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于双向递归神经网络和基于知识的神经网络相结合的有效混合方法,用于多噪声源下CMOS逆变器链的抖动预测。新方法既能达到合理的精度,又能利用从电路模拟器和分析关系中获得的输入数据进行有效的训练。该方法还可以通过仅使用与第一个逆变器相关的准确训练数据来估计链中每个逆变器的抖动,与传统方法相比,速度显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge-Based Bidirectional Recurrent Neural Network Approach for Efficient Prediction of Jitter in a Chain of CMOS Inverters
An efficient hybrid approach based on combining the bidirectional recurrent neural network with knowledge-based neural network is presented to predict jitter in a chain of CMOS inverters in the presence of multiple noise sources. The new method achieves a reasonable accuracy and provides for efficient training using input data obtained from both a circuit simulator as well as analytical relations. The proposed approach can also estimate jitter for each inverter in the chain by only employing the accurate training data associated with the first inverter, resulting in a significant increase in speed compared to conventional approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信