{"title":"基于知识的双向递归神经网络方法有效预测CMOS逆变器链中的抖动","authors":"Ahsan Javaid;Ramachandra Achar;Jai Narayan Tripathi","doi":"10.1109/JMMCT.2025.3602632","DOIUrl":null,"url":null,"abstract":"An efficient hybrid approach based on combining the bidirectional recurrent neural network with knowledge-based neural network is presented to predict jitter in a chain of CMOS inverters in the presence of multiple noise sources. The new method achieves a reasonable accuracy and provides for efficient training using input data obtained from both a circuit simulator as well as analytical relations. The proposed approach can also estimate jitter for each inverter in the chain by only employing the accurate training data associated with the first inverter, resulting in a significant increase in speed compared to conventional approaches.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"407-420"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge-Based Bidirectional Recurrent Neural Network Approach for Efficient Prediction of Jitter in a Chain of CMOS Inverters\",\"authors\":\"Ahsan Javaid;Ramachandra Achar;Jai Narayan Tripathi\",\"doi\":\"10.1109/JMMCT.2025.3602632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient hybrid approach based on combining the bidirectional recurrent neural network with knowledge-based neural network is presented to predict jitter in a chain of CMOS inverters in the presence of multiple noise sources. The new method achieves a reasonable accuracy and provides for efficient training using input data obtained from both a circuit simulator as well as analytical relations. The proposed approach can also estimate jitter for each inverter in the chain by only employing the accurate training data associated with the first inverter, resulting in a significant increase in speed compared to conventional approaches.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"10 \",\"pages\":\"407-420\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11141018/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11141018/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Knowledge-Based Bidirectional Recurrent Neural Network Approach for Efficient Prediction of Jitter in a Chain of CMOS Inverters
An efficient hybrid approach based on combining the bidirectional recurrent neural network with knowledge-based neural network is presented to predict jitter in a chain of CMOS inverters in the presence of multiple noise sources. The new method achieves a reasonable accuracy and provides for efficient training using input data obtained from both a circuit simulator as well as analytical relations. The proposed approach can also estimate jitter for each inverter in the chain by only employing the accurate training data associated with the first inverter, resulting in a significant increase in speed compared to conventional approaches.