Muralikrishnna G. Sethuraman;Megan A. McSweeney;Mark P. Styczynski;Faramarz Fekri
{"title":"利用密度进化技术构建微rna监测生物传感器阵列","authors":"Muralikrishnna G. Sethuraman;Megan A. McSweeney;Mark P. Styczynski;Faramarz Fekri","doi":"10.1109/TMBMC.2025.3547892","DOIUrl":null,"url":null,"abstract":"Monitoring the levels of biomarkers for diagnostic applications has significant potential for impacts on patient care, but the measurement of all relevant biomarkers for a given set of conditions is often too expensive or unwieldy to be feasible at scale. Here, we propose a novel computational method for detecting changes in the levels of multiple target molecules from a complex sample via a small, cost-effective group of biosensors. We use the framework of density evolution (DE), a technique commonly used in the design of linear error-correcting codes for transmission over noisy channels, to develop an approach for localizing changes to a small subset of input signals based on a few simple output signals. As a biologically relevant testbed, we sought to detect the changes in the levels of multiple different microRNAs (miRNAs), which are nucleic acid molecules that are being increasingly studied and used as biomarkers. We accomplished this via the use of a class of molecules called “toehold switches” to create biosensors each capable of detecting multiple different miRNA sequences via a single output, with an overlap in sensitivity patterns between the different biosensors. A small number of these sensors were then used for inference of miRNA profiles. We demonstrate the potential utility of our approach with real data. Experimental results indicate the promising outcomes regarding the effectiveness of our method in detecting changes in miRNA concentrations.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 3","pages":"335-343"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of an Array of Biosensors Using Density Evolution for MicroRNA Monitoring\",\"authors\":\"Muralikrishnna G. Sethuraman;Megan A. McSweeney;Mark P. Styczynski;Faramarz Fekri\",\"doi\":\"10.1109/TMBMC.2025.3547892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring the levels of biomarkers for diagnostic applications has significant potential for impacts on patient care, but the measurement of all relevant biomarkers for a given set of conditions is often too expensive or unwieldy to be feasible at scale. Here, we propose a novel computational method for detecting changes in the levels of multiple target molecules from a complex sample via a small, cost-effective group of biosensors. We use the framework of density evolution (DE), a technique commonly used in the design of linear error-correcting codes for transmission over noisy channels, to develop an approach for localizing changes to a small subset of input signals based on a few simple output signals. As a biologically relevant testbed, we sought to detect the changes in the levels of multiple different microRNAs (miRNAs), which are nucleic acid molecules that are being increasingly studied and used as biomarkers. We accomplished this via the use of a class of molecules called “toehold switches” to create biosensors each capable of detecting multiple different miRNA sequences via a single output, with an overlap in sensitivity patterns between the different biosensors. A small number of these sensors were then used for inference of miRNA profiles. We demonstrate the potential utility of our approach with real data. Experimental results indicate the promising outcomes regarding the effectiveness of our method in detecting changes in miRNA concentrations.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"11 3\",\"pages\":\"335-343\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909690/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909690/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Construction of an Array of Biosensors Using Density Evolution for MicroRNA Monitoring
Monitoring the levels of biomarkers for diagnostic applications has significant potential for impacts on patient care, but the measurement of all relevant biomarkers for a given set of conditions is often too expensive or unwieldy to be feasible at scale. Here, we propose a novel computational method for detecting changes in the levels of multiple target molecules from a complex sample via a small, cost-effective group of biosensors. We use the framework of density evolution (DE), a technique commonly used in the design of linear error-correcting codes for transmission over noisy channels, to develop an approach for localizing changes to a small subset of input signals based on a few simple output signals. As a biologically relevant testbed, we sought to detect the changes in the levels of multiple different microRNAs (miRNAs), which are nucleic acid molecules that are being increasingly studied and used as biomarkers. We accomplished this via the use of a class of molecules called “toehold switches” to create biosensors each capable of detecting multiple different miRNA sequences via a single output, with an overlap in sensitivity patterns between the different biosensors. A small number of these sensors were then used for inference of miRNA profiles. We demonstrate the potential utility of our approach with real data. Experimental results indicate the promising outcomes regarding the effectiveness of our method in detecting changes in miRNA concentrations.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.