{"title":"Li+, NH4+, Ca2+//Cl—H2O在323.2和348.2 K下的固液相平衡","authors":"Shuang Wang, Jinniu Chen, Jiubo Liu, Jiantuan Jia, Shuai Chen, Changhao Wu and Xudong Yu*, ","doi":"10.1021/acs.jced.5c00392","DOIUrl":null,"url":null,"abstract":"<p >The solid–liquid phase equilibria of the quaternary system Li<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup>//Cl<sup>–</sup>–H<sub>2</sub>O at 323.2 and 348.2 K was investigated using isothermal dissolution method, targeting deep brines rich in ammonium and calcium. Equilibrium liquid-phase composition and density were determined. The solid solution (NH<sub>4</sub>Cl)<sub><i>x</i></sub>(LiCl·H<sub>2</sub>O)<sub>1–<i>x</i></sub> was confirmed by XRD and TG-DSC. The results show that the quaternary system Li<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup>//Cl<sup>–</sup>–H<sub>2</sub>O at 323.2 and 348.2 K exhibits complex behavior involving the formation of solid solution (NH<sub>4</sub>Cl)<sub><i>x</i></sub>(LiCl·H<sub>2</sub>O)<sub>1–<i>x</i></sub> and double salt (2NH<sub>4</sub>Cl·CaCl<sub>2</sub>·3H<sub>2</sub>O). The phase diagram of the system at 323.2 K consists of three invariant points, seven univariate curves, and five crystalline phase regions (NH<sub>4</sub>Cl, LiCl·H<sub>2</sub>O, 2NH<sub>4</sub>Cl·CaCl<sub>2</sub>·3H<sub>2</sub>O, (NH<sub>4</sub>Cl)<sub><i>x</i></sub>(LiCl·H<sub>2</sub>O)<sub>1–<i>x</i></sub>, and CaCl<sub>2</sub>·2H<sub>2</sub>O). At 348.2 K, it has two invariant points, five univariant curves, and four crystalline regions (NH<sub>4</sub>Cl, 2NH<sub>4</sub>Cl·CaCl<sub>2</sub>·3H<sub>2</sub>O, (NH<sub>4</sub>Cl)<sub><i>x</i></sub>(LiCl·H<sub>2</sub>O)<sub>1–<i>x</i></sub>, and CaCl<sub>2</sub>·2H<sub>2</sub>O). Comparative analysis of multitemperature phase diagrams of the quaternary system Li<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup>//Cl<sup>–</sup>–H<sub>2</sub>O at 298.2, 323.2, and 348.2 K demonstrates that the crystalline phase region of LiCl·H<sub>2</sub>O decreases with the increase of temperature. Notably, at 348.2 K, lithium chloride exclusively exists within the (NH<sub>4</sub>Cl)<sub><i>x</i></sub>(LiCl·H<sub>2</sub>O)<sub>1–<i>x</i></sub>. This thermal behavior suggests that cooling crystallization could be effectively employed for lithium extraction from such brines.</p>","PeriodicalId":42,"journal":{"name":"Journal of Chemical & Engineering Data","volume":"70 9","pages":"3880–3890"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid–Liquid Phase Equilibria of Quaternary System Li+, NH4+, Ca2+//Cl––H2O at 323.2 and 348.2 K\",\"authors\":\"Shuang Wang, Jinniu Chen, Jiubo Liu, Jiantuan Jia, Shuai Chen, Changhao Wu and Xudong Yu*, \",\"doi\":\"10.1021/acs.jced.5c00392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The solid–liquid phase equilibria of the quaternary system Li<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup>//Cl<sup>–</sup>–H<sub>2</sub>O at 323.2 and 348.2 K was investigated using isothermal dissolution method, targeting deep brines rich in ammonium and calcium. Equilibrium liquid-phase composition and density were determined. The solid solution (NH<sub>4</sub>Cl)<sub><i>x</i></sub>(LiCl·H<sub>2</sub>O)<sub>1–<i>x</i></sub> was confirmed by XRD and TG-DSC. The results show that the quaternary system Li<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup>//Cl<sup>–</sup>–H<sub>2</sub>O at 323.2 and 348.2 K exhibits complex behavior involving the formation of solid solution (NH<sub>4</sub>Cl)<sub><i>x</i></sub>(LiCl·H<sub>2</sub>O)<sub>1–<i>x</i></sub> and double salt (2NH<sub>4</sub>Cl·CaCl<sub>2</sub>·3H<sub>2</sub>O). The phase diagram of the system at 323.2 K consists of three invariant points, seven univariate curves, and five crystalline phase regions (NH<sub>4</sub>Cl, LiCl·H<sub>2</sub>O, 2NH<sub>4</sub>Cl·CaCl<sub>2</sub>·3H<sub>2</sub>O, (NH<sub>4</sub>Cl)<sub><i>x</i></sub>(LiCl·H<sub>2</sub>O)<sub>1–<i>x</i></sub>, and CaCl<sub>2</sub>·2H<sub>2</sub>O). At 348.2 K, it has two invariant points, five univariant curves, and four crystalline regions (NH<sub>4</sub>Cl, 2NH<sub>4</sub>Cl·CaCl<sub>2</sub>·3H<sub>2</sub>O, (NH<sub>4</sub>Cl)<sub><i>x</i></sub>(LiCl·H<sub>2</sub>O)<sub>1–<i>x</i></sub>, and CaCl<sub>2</sub>·2H<sub>2</sub>O). Comparative analysis of multitemperature phase diagrams of the quaternary system Li<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup>//Cl<sup>–</sup>–H<sub>2</sub>O at 298.2, 323.2, and 348.2 K demonstrates that the crystalline phase region of LiCl·H<sub>2</sub>O decreases with the increase of temperature. Notably, at 348.2 K, lithium chloride exclusively exists within the (NH<sub>4</sub>Cl)<sub><i>x</i></sub>(LiCl·H<sub>2</sub>O)<sub>1–<i>x</i></sub>. This thermal behavior suggests that cooling crystallization could be effectively employed for lithium extraction from such brines.</p>\",\"PeriodicalId\":42,\"journal\":{\"name\":\"Journal of Chemical & Engineering Data\",\"volume\":\"70 9\",\"pages\":\"3880–3890\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical & Engineering Data\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jced.5c00392\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical & Engineering Data","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jced.5c00392","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solid–Liquid Phase Equilibria of Quaternary System Li+, NH4+, Ca2+//Cl––H2O at 323.2 and 348.2 K
The solid–liquid phase equilibria of the quaternary system Li+, NH4+, Ca2+//Cl––H2O at 323.2 and 348.2 K was investigated using isothermal dissolution method, targeting deep brines rich in ammonium and calcium. Equilibrium liquid-phase composition and density were determined. The solid solution (NH4Cl)x(LiCl·H2O)1–x was confirmed by XRD and TG-DSC. The results show that the quaternary system Li+, NH4+, Ca2+//Cl––H2O at 323.2 and 348.2 K exhibits complex behavior involving the formation of solid solution (NH4Cl)x(LiCl·H2O)1–x and double salt (2NH4Cl·CaCl2·3H2O). The phase diagram of the system at 323.2 K consists of three invariant points, seven univariate curves, and five crystalline phase regions (NH4Cl, LiCl·H2O, 2NH4Cl·CaCl2·3H2O, (NH4Cl)x(LiCl·H2O)1–x, and CaCl2·2H2O). At 348.2 K, it has two invariant points, five univariant curves, and four crystalline regions (NH4Cl, 2NH4Cl·CaCl2·3H2O, (NH4Cl)x(LiCl·H2O)1–x, and CaCl2·2H2O). Comparative analysis of multitemperature phase diagrams of the quaternary system Li+, NH4+, Ca2+//Cl––H2O at 298.2, 323.2, and 348.2 K demonstrates that the crystalline phase region of LiCl·H2O decreases with the increase of temperature. Notably, at 348.2 K, lithium chloride exclusively exists within the (NH4Cl)x(LiCl·H2O)1–x. This thermal behavior suggests that cooling crystallization could be effectively employed for lithium extraction from such brines.
期刊介绍:
The Journal of Chemical & Engineering Data is a monthly journal devoted to the publication of data obtained from both experiment and computation, which are viewed as complementary. It is the only American Chemical Society journal primarily concerned with articles containing data on the phase behavior and the physical, thermodynamic, and transport properties of well-defined materials, including complex mixtures of known compositions. While environmental and biological samples are of interest, their compositions must be known and reproducible. As a result, adsorption on natural product materials does not generally fit within the scope of Journal of Chemical & Engineering Data.