两性离子共聚物和银纳米粒子涂层的制备及其抗菌性能

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chuangxin Huang, Xin Liu*, Zhan Gao, Shangwan Fu, Jianli Meng, Qi Chen and Qiuliang Wang, 
{"title":"两性离子共聚物和银纳米粒子涂层的制备及其抗菌性能","authors":"Chuangxin Huang,&nbsp;Xin Liu*,&nbsp;Zhan Gao,&nbsp;Shangwan Fu,&nbsp;Jianli Meng,&nbsp;Qi Chen and Qiuliang Wang,&nbsp;","doi":"10.1021/acsapm.5c01897","DOIUrl":null,"url":null,"abstract":"<p >Titanium (Ti) implants face significant challenges due to bacterial infections and thrombosis caused by surface biofouling, often leading to implantation failure. Hence, we developed an accelerated codeposition strategy to functionalize Ti surfaces with zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and silver nanoparticles (AgNPs) for enhanced antibiofouling and antibacterial properties. In this approach, AgNO<sub>3</sub> served a dual role: (1) as an oxidant to accelerate dopamine polymerization and PSBMA codeposition, reducing reaction time from 24 to 4 h and (2) as a precursor for in situ synthesis of uniformly distributed AgNPs via phenolic hydroxyl reduction. The optimized Ti/PDA–[email protected] coating exhibited superior and robust antibacterial performance, achieving &gt;99.9% inhibition against both <i>E. coli</i> and <i>S. aureus</i>, while the cytotoxicity assays confirmed high L929 fibroblast viability (&gt;90%), ensuring biosafety. In addition, the zwitterionic polymer contained in the Ti/PDA–[email protected] coating provided superhydrophilicity and outstanding protein resistance, reducing 85% of both bovine fibrinogen (BFG) and bovine serum albumin (BSA) adsorption compared to unmodified Ti. Finally, the modified Ti substrates demonstrated minimal hemolysis ratio (&lt;3%), reduced platelet adhesion, and prolonged activated partial thromboplastin time (APTT), indicating excellent hemocompatibility and strong anticoagulant properties. Thus, this work presents a rapid, scalable method to engineer multifunctional Ti implants with synergistic antifouling and bactericidal capabilities, offering significant potential for clinical applications in orthopedic, dental, and cardiovascular devices.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 17","pages":"11356–11372"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Zwitterionic Copolymer and Ag Nanoparticle Coating for Enhanced Antibiofouling and Bactericidal Properties\",\"authors\":\"Chuangxin Huang,&nbsp;Xin Liu*,&nbsp;Zhan Gao,&nbsp;Shangwan Fu,&nbsp;Jianli Meng,&nbsp;Qi Chen and Qiuliang Wang,&nbsp;\",\"doi\":\"10.1021/acsapm.5c01897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Titanium (Ti) implants face significant challenges due to bacterial infections and thrombosis caused by surface biofouling, often leading to implantation failure. Hence, we developed an accelerated codeposition strategy to functionalize Ti surfaces with zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and silver nanoparticles (AgNPs) for enhanced antibiofouling and antibacterial properties. In this approach, AgNO<sub>3</sub> served a dual role: (1) as an oxidant to accelerate dopamine polymerization and PSBMA codeposition, reducing reaction time from 24 to 4 h and (2) as a precursor for in situ synthesis of uniformly distributed AgNPs via phenolic hydroxyl reduction. The optimized Ti/PDA–[email protected] coating exhibited superior and robust antibacterial performance, achieving &gt;99.9% inhibition against both <i>E. coli</i> and <i>S. aureus</i>, while the cytotoxicity assays confirmed high L929 fibroblast viability (&gt;90%), ensuring biosafety. In addition, the zwitterionic polymer contained in the Ti/PDA–[email protected] coating provided superhydrophilicity and outstanding protein resistance, reducing 85% of both bovine fibrinogen (BFG) and bovine serum albumin (BSA) adsorption compared to unmodified Ti. Finally, the modified Ti substrates demonstrated minimal hemolysis ratio (&lt;3%), reduced platelet adhesion, and prolonged activated partial thromboplastin time (APTT), indicating excellent hemocompatibility and strong anticoagulant properties. Thus, this work presents a rapid, scalable method to engineer multifunctional Ti implants with synergistic antifouling and bactericidal capabilities, offering significant potential for clinical applications in orthopedic, dental, and cardiovascular devices.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"7 17\",\"pages\":\"11356–11372\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.5c01897\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c01897","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于细菌感染和表面生物污垢引起的血栓形成,钛(Ti)植入物面临着巨大的挑战,往往导致植入失败。因此,我们开发了一种加速共沉积策略,用两性离子聚甲基丙烯酸亚砜甜菜碱(PSBMA)和银纳米粒子(AgNPs)功能化钛表面,以增强抗污垢和抗菌性能。在这种方法中,AgNO3具有双重作用:(1)作为氧化剂加速多巴胺聚合和PSBMA共沉积,将反应时间从24小时缩短到4小时;(2)作为通过酚羟基还原原位合成均匀分布的AgNPs的前体。优化后的Ti/PDA -涂层表现出优异而稳健的抗菌性能,对大肠杆菌和金黄色葡萄球菌的抑制率均达到99.9%,而细胞毒性试验证实L929成纤维细胞存活率高(90%),确保了生物安全性。此外,Ti/PDA -涂层中含有的两性离子聚合物具有超亲水性和出色的蛋白质抗性,与未修饰的Ti相比,牛纤维蛋白原(BFG)和牛血清白蛋白(BSA)的吸附量减少了85%。最后,经过修饰的Ti底物表现出最小的溶血率(3%),降低血小板粘附,延长活化的部分凝血活素时间(APTT),表明了良好的血液相容性和强大的抗凝性能。因此,这项工作提出了一种快速、可扩展的方法来设计具有协同防污和杀菌能力的多功能钛植入物,为骨科、牙科和心血管设备的临床应用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fabrication of Zwitterionic Copolymer and Ag Nanoparticle Coating for Enhanced Antibiofouling and Bactericidal Properties

Fabrication of Zwitterionic Copolymer and Ag Nanoparticle Coating for Enhanced Antibiofouling and Bactericidal Properties

Titanium (Ti) implants face significant challenges due to bacterial infections and thrombosis caused by surface biofouling, often leading to implantation failure. Hence, we developed an accelerated codeposition strategy to functionalize Ti surfaces with zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and silver nanoparticles (AgNPs) for enhanced antibiofouling and antibacterial properties. In this approach, AgNO3 served a dual role: (1) as an oxidant to accelerate dopamine polymerization and PSBMA codeposition, reducing reaction time from 24 to 4 h and (2) as a precursor for in situ synthesis of uniformly distributed AgNPs via phenolic hydroxyl reduction. The optimized Ti/PDA–[email protected] coating exhibited superior and robust antibacterial performance, achieving >99.9% inhibition against both E. coli and S. aureus, while the cytotoxicity assays confirmed high L929 fibroblast viability (>90%), ensuring biosafety. In addition, the zwitterionic polymer contained in the Ti/PDA–[email protected] coating provided superhydrophilicity and outstanding protein resistance, reducing 85% of both bovine fibrinogen (BFG) and bovine serum albumin (BSA) adsorption compared to unmodified Ti. Finally, the modified Ti substrates demonstrated minimal hemolysis ratio (<3%), reduced platelet adhesion, and prolonged activated partial thromboplastin time (APTT), indicating excellent hemocompatibility and strong anticoagulant properties. Thus, this work presents a rapid, scalable method to engineer multifunctional Ti implants with synergistic antifouling and bactericidal capabilities, offering significant potential for clinical applications in orthopedic, dental, and cardiovascular devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信