纳米尖端设计的TiO2光阳极通过选择性水氧化实现羟基自由基的高效合成。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jun Zhang*, , , Ruiquan Yu, , , Songying Qu*, , , Jie Mao, , and , Li Ling*, 
{"title":"纳米尖端设计的TiO2光阳极通过选择性水氧化实现羟基自由基的高效合成。","authors":"Jun Zhang*,&nbsp;, ,&nbsp;Ruiquan Yu,&nbsp;, ,&nbsp;Songying Qu*,&nbsp;, ,&nbsp;Jie Mao,&nbsp;, and ,&nbsp;Li Ling*,&nbsp;","doi":"10.1021/acs.nanolett.5c03879","DOIUrl":null,"url":null,"abstract":"<p >Hydroxyl radicals (·OH) are pivotal for green synthesis, anticancer therapy, and environmental remediation, yet controllable synthesis remains challenging. Photoelectrochemical single-electron water oxidation (1e<sup>–</sup> WOR) provides a sustainable route for on-demand ·OH generation but is hindered by competing 4e<sup>–</sup> oxidation pathways and sluggish interfacial mass transport. Here, we overcome these limitations through a nanotip engineering strategy that integrates synergistic microfield regulation and interface optimization. Using TiO<sub>2</sub> nanocones, we demonstrate nanotip-generated localized positive-charge-enhanced electric fields and reagent/temperature gradients. This configuration enhances OH<sup>–</sup> adsorption, elevates the *OH → *O energy barrier, and boosts mass transport, collectively promoting ·OH generation. Furthermore, inherent aerophobicity enables rapid O<sub>2</sub> bubble detachment, suppressing detrimental *OH–O<sub>2</sub> hydrogen bonding (thermodynamically favoring the 1e<sup>–</sup> pathway) while dynamically renewing active sites (kinetically reducing steric hindrance). These synergistic effects yield a record ·OH synthesis rate (∼92.2 μM/min) and near-complete pollutant degradation (&gt;6.7-fold enhancement over previous reports). Our work establishes rational design principles for high-efficiency ·OH-driven photoelectrodes.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 42","pages":"15279–15287"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanotip-Engineered TiO2 Photoanodes Enable Efficient Hydroxyl Radical Synthesis via Selective Water Oxidation\",\"authors\":\"Jun Zhang*,&nbsp;, ,&nbsp;Ruiquan Yu,&nbsp;, ,&nbsp;Songying Qu*,&nbsp;, ,&nbsp;Jie Mao,&nbsp;, and ,&nbsp;Li Ling*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c03879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydroxyl radicals (·OH) are pivotal for green synthesis, anticancer therapy, and environmental remediation, yet controllable synthesis remains challenging. Photoelectrochemical single-electron water oxidation (1e<sup>–</sup> WOR) provides a sustainable route for on-demand ·OH generation but is hindered by competing 4e<sup>–</sup> oxidation pathways and sluggish interfacial mass transport. Here, we overcome these limitations through a nanotip engineering strategy that integrates synergistic microfield regulation and interface optimization. Using TiO<sub>2</sub> nanocones, we demonstrate nanotip-generated localized positive-charge-enhanced electric fields and reagent/temperature gradients. This configuration enhances OH<sup>–</sup> adsorption, elevates the *OH → *O energy barrier, and boosts mass transport, collectively promoting ·OH generation. Furthermore, inherent aerophobicity enables rapid O<sub>2</sub> bubble detachment, suppressing detrimental *OH–O<sub>2</sub> hydrogen bonding (thermodynamically favoring the 1e<sup>–</sup> pathway) while dynamically renewing active sites (kinetically reducing steric hindrance). These synergistic effects yield a record ·OH synthesis rate (∼92.2 μM/min) and near-complete pollutant degradation (&gt;6.7-fold enhancement over previous reports). Our work establishes rational design principles for high-efficiency ·OH-driven photoelectrodes.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 42\",\"pages\":\"15279–15287\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03879\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03879","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

羟基自由基(·OH)是绿色合成、抗癌治疗和环境修复的关键,但可控的合成仍然具有挑战性。光电化学单电子水氧化(1e- WOR)为按需生成·OH提供了一条可持续的途径,但受到竞争的4e-氧化途径和缓慢的界面质量传递的阻碍。在这里,我们通过纳米尖端工程策略克服了这些限制,该策略集成了协同微场调节和界面优化。利用TiO2纳米锥,我们展示了纳米尖端产生的局部正电荷增强电场和试剂/温度梯度。这种结构增强了OH-吸附,提高了*OH→*O的能垒,促进了质量传递,共同促进了·OH的生成。此外,固有的疏气性使O2气泡快速脱离,抑制有害的*OH-O2氢键(热力学上有利于1e-途径),同时动态更新活性位点(动力学上降低位阻)。这些协同效应产生了创纪录的·OH合成速率(~ 92.2 μM/min)和几乎完全的污染物降解(比以前的报道提高了6.7倍)。我们的工作建立了高效·oh驱动光电极的合理设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanotip-Engineered TiO2 Photoanodes Enable Efficient Hydroxyl Radical Synthesis via Selective Water Oxidation

Nanotip-Engineered TiO2 Photoanodes Enable Efficient Hydroxyl Radical Synthesis via Selective Water Oxidation

Hydroxyl radicals (·OH) are pivotal for green synthesis, anticancer therapy, and environmental remediation, yet controllable synthesis remains challenging. Photoelectrochemical single-electron water oxidation (1e WOR) provides a sustainable route for on-demand ·OH generation but is hindered by competing 4e oxidation pathways and sluggish interfacial mass transport. Here, we overcome these limitations through a nanotip engineering strategy that integrates synergistic microfield regulation and interface optimization. Using TiO2 nanocones, we demonstrate nanotip-generated localized positive-charge-enhanced electric fields and reagent/temperature gradients. This configuration enhances OH adsorption, elevates the *OH → *O energy barrier, and boosts mass transport, collectively promoting ·OH generation. Furthermore, inherent aerophobicity enables rapid O2 bubble detachment, suppressing detrimental *OH–O2 hydrogen bonding (thermodynamically favoring the 1e pathway) while dynamically renewing active sites (kinetically reducing steric hindrance). These synergistic effects yield a record ·OH synthesis rate (∼92.2 μM/min) and near-complete pollutant degradation (>6.7-fold enhancement over previous reports). Our work establishes rational design principles for high-efficiency ·OH-driven photoelectrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信